Publications from The MolSSI
In our continuing effort to expand MolSSI’s outreach and enhance our benefit to the community, we provide a repository of MolSSI-sponsored publications. (Bolded names indicate a MOlSSI Software Fellow, Scientist, or member of the Board of Directors.). For an inventory of the MolSSI’s most highly cited publications, visit our Google Scholar listing!
- Naden, L.N.; Nash, J.A.; Crawford, T.D.; & Ringer McDonald, A.
Cookiecutter for Computational Molecular Sciences: A Best Practices Ready Python Project Generator
Journal of Chemical Education, 2024, 101(11), 5105-5109
10.1021/acs.jchemed.4c00793
- Windom, Z.A.; Perera, A.; & Barlett, R.J.
An “ultimate” coupled cluster method based entirely on T2
J. Chem Phys., 2024, 161, 184106
10.1063/5.0228453
- Manderna, R.; Vu, N.; Foley IV, J.J.
Comparing parameterized and self-consistent approaches to ab initio cavity quantum electrodynamics for electronic strong coupling
The Journal of Chemical Physics, 2024, 161(17), 174105
10.1063/5.0230565
- Vizcarra, C.L.; Trainor, R.F.; Ringer McDonald, A.; Richardson, C.T.; Potoyan, D.; Nash, J.A.; Lundgren, B.; Luchko, T.; Hocky, G.M.; Foley IV, J.J.; Atherton, T.L. & Stokes, G.Y.
An interdisciplinary effort to integrate coding into science courses
Nature Computational Sciences, 2024
https://doi.org/10.1038/s43588-024-00708-2
- Mostafanejad, M.
Unification of Popular Artificial Neural Network Activation Functions
Fractional Calculus and Applied Analysis, 2024
https://doi.org/10.1007/s13540-024-00347-4
- L.A. Burns; C.D. Sherrill; & P.B. Pritchard
QCManyBody: A Flexible Implementation of the Many-Body Expansion
The Journal of Chemical Physics, 2024, 161(15), 2501
https://doi.org/10.1063/5.0231843
- P. Eastman; B.P. Pritchard; J.D. Chodera; & T.E. Markland
Nutmeg and SPICE: Models and Data for Biomolecular Machine Learning
Journal of Chemical Theory and Computation, 2024, 20(19), 8583-8593.
https://doi.org/10.1021/acs.jctc.4c00794
- Hemmati, R.; Mostafanejad, M.; & Ortiz, J.V.
Numerical analysis of the complete active-space extended Koopmans’s theorem
The Journal of Chemical Physics, 2024, 161, 094101
https://doi.org/10.1063/5.0226057
- Thorpe, J.H.; Windom, Z. W.; Bartlett, R.J.; & Matthews, D.A.
Factorized Quadruples and a Predictor of Higher-Level Correlation in Thermochemistry
The Journal of Physical Chemistry A, 2024, 128(36), 7720-7732.
https://doi.org/10.1021/acs.jpca.4c04460
- Jiang, A.; Glick Z.L.; Poole, D.; Turney, J.M.; Sherrill, D.C.; & Schaefer, III, H.F.
Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian
The Journal of Chemical Physics, 2024, 161, 082502
https://doi.org/10.1063/5.0219963
- Windom, Z.W.; Claudino, D.; & Bartlett, R.J.
An Attractive Way to Correct for Missing Singles Excitations in Unitary Coupled Cluster Doubles Theory
Journal of Physical Chemistry A, 2024, 128(33), 7036-7045
https://doi.org/10.1021/acs.jpca.4c03935
- Miller, E.R.; Hoehn, S.J.; Kumar, A.; Jiang, D.; & Parker, S.M.
Ultrafast photochemistry and electron diffraction for cyclobutanone in the S2 state: Surface hopping with time-dependent density functional theory
The Journal of Chemical Physics, 2024, 161 (3), 034105
https://doi.org/10.1063/5.0203679
- Fuchs, W.; Ringer McDonald, A.; Guatam, A.; & Kazerouni, A.M.
Recommendations for Improving End-User Programming Education: A Case Study with Undergraduate Chemistry Students
Journal of Chemical Education, 2024, 10(8), 3085-3096
https://doi.org/10.1021/acs.jchemed.4c00219
- Eastman, P.; Pritchard, B.P.; Chodera, J.D.; & Markland, T.E.
Nutmeg and SPICE: Models and Data for Biomolecular Machine Learning
Chem arXiv: 2024, 2406:13112
https://doi.org/10.48550/arXiv.2406.13112
- Barnes, T.A.; Ellis, S.; Chen, J.; Plimpton, S.J.; Nash, J.A.
Plugin-based interoperability and ecosystem management for the MolSSI Driver Interface Project
The Journal of Chemical Physics, 2024, 160, 214114
https://doi.org/10.1063/5.0214279
- Windom, Z.W.; Claudino, D.; Bartlett, R.J.
A new “gold standard”: Perturbative triples corrections in unitary coupled cluster theory and prospects for quantum computing
The Journal of Chemical Physics, 2024, 160, 214113
https://doi.org/10.1063/5.0202567
- Rios-Vargas, V.; Shao., X,; Trickey, S.B.; Pavanello, M.
Effective Wang-Teter kernels for improved orbital-free density functional theory simulations
Physical Review B, 2024, 110, 085129
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.085129
- Burgin, T.; Pollard, B.C.; Knott, B.C.; Mayes, H.B.; Crowley, M.F.; McGeehan, J.E.; Beckham, G.T.; & Woodcock. H.L.
The reaction mechanism of the Ideonella sakaeinsis PETase enzyme
Communications Chemistry, 2024, 7(65).
10.1038/s42004-024-01154-x
- Lotthammer, J.M.; Ginell, G.M.; Griffith, D.; Emenecker, R.J. & Holehouse, A.S.
Direct prediction of intrinsically disordered protein conformational properties from sequences
Nature Methods, 2024
10.1038/s41592-023-02159-5
- Zhang, T.; Banerjee, S.; Koulias, L.N.; Valeev, E.F.; DePrince III, A.E.; & Li, X.
Dirac–Coulomb–Breit Molecular Mean-Field Exact-Two-Component Relativistic Equation-of-Motion Coupled-Cluster Theory
The Journal of Physical Chemistry A., 2024, 128(17), 3408-3418
https://doi.org/10.1021/acs.jpca.3c08167
- Pavlicek, A.; Windom, Z.A.; Perera, A.; & Bartlett, R.J.
A comparison of QTP functionals against coupled-cluster methods for EAs of small organic molecules
J. Chem Phys., 2024, 160, 014106
jcp/article/160/1/014106/2932469
- Zhao, C.; Kleiman, D.E.; Shukla, D.
Resolving binding pathways and solvation thermodynamics of plant hormone receptors
Journal of Biological Chemistry, 2023, 299(12), 105456
10.1016/j.jbc.2023.105456
- Kleiman, D.E.; Nadeem, H.; & Shukla, D.
Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning
J. Phys. Chem. B, 2023, 127, 50, 10669-10681
10.1021/acs.jpcb.3c04843
- Pretti, E., & Shell, M.S.
Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6
Proceedings of the National Academy of Sciences, 2023, 120(48).
10.1073/pnas.2309995120
- Jones, M.S.; Shmilovich, K.; & Ferguson, A.L.
DiAMoNDBack: Diffusion-Denoising Autoregressive Model for Non-Deterministic Backmapping of Cα Protein Traces
J. Chem. Theory Comput, 2023, 19, 21, 7908-7923
10.1021/acs.jctc.3c00840
- Peyton, B.G.; Wang, Z.; & Crawford, T.D.
Reduced Scaling Real-Time Coupled Cluster Theory
J. Phys. Chem. A, 2023, 127, 40, 8486-8499.
10.1021/acs.jpca.3c05151
- Lehtola, S., & Marques, M.A.L.
Reproducibility of density functional approximations: How new functionals should be reported
The Journal of Chemical Physics, 2023, 114116
10.1063/5.0167763
- Ojha, A.A., Votapka, L.W.; & Amaro. R.
QMrebind: Incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through milestoning simulations
Chemical Science, 2023
10.1039/D3SC04195F
- Li Manni, G. . . . Scott, T.R. . . . Lehtola. S. . . . Lindh, R.
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
J. Chem. Theory Comput., 2023, 19, 20, 6933-6991.
10.1021/acs.jctc.3c00182
- Riera, M., Knight, C.; Bull-Vulpe, E.F.; Zhu, X; Agnew, H.; Smith, D.G.A.; Simmonett, A.C.; Paesani F.
MBX: A many-body energy and force calculator for data-driven many-body simulations
The Journal of Chemical Physics, 2023, 159(5), 054802
10.1063/5.0156036
- Lehtola, S. & Marques, M.A.L.
Reproducibility of density functional approximations: How new functionals should be reported
Chem arXiv: 2307.07474, 2023
10.48550/arXiv.2307.07474
- I. Quintela Matos & F.A. Escobedo
Self-Assembling of Nonadditive Mixtures Containing Patchy Particles with Tunable Interactions
J. Phys. Chem B., 2023, 127(41), 8982-8992
10.1021/acs.jpcb.3c05302
- Lalmansingh, J.M., Keeley, A.T., Ruff, K. M.; Pappu, R.V., & Holehouse, A.S.
SOURSOP: A Python Package for the Analysis of Simulations of Intrinsically Disordered Proteins
J. Chem. Theory Comput. 2023, 19(16), 5609-5620
10.1021/acs.jctc.3c00190
- Lehtola, S.
Automatic Generation of Accurate and Cost-efficient Auxiliary Basis Sets
Chem arXiv:2306.11039, 2023
arxiv.org/abs/2306.11039
- Banerjee, S., & Sokolov, A. Y.
Algebraic Diagrammatic Construction Theory for Simulating Charged Excited States and Photoelectron Spectra
J. Chem. Theory Comput., 2023, 19, 11, 3037-3053
10.1021/acs.jctc.3c00251
- Windom, Z.A. & Bartlett, R.J.
On the iterative diagonalization of matrices in quantum chemistry: Reconciling preconditioner design with Brillouin–Wigner perturbation theory
Journal of Chemical Physics, 2023, 158, 134107
10.1063/5.0139295
- Moussa, J.E.
Model selection in atomistic simulation
The Journal of Chemical Physics, 2023, 158, 13, 134103
10.1063/5.0142248
- Lehtola, S.
Meta-GGA Density Functional Calculations on Atoms with Spherically Symmetric Densities in the Finite Element Formalism
J. Chem. Theory Comput, 2023, 19, 9, 2502-2517
10.1021/acs.jctc.3c00183
- Shmilovich, K. & Ferguson A.L.
Girsanov Reweighting Enhanced Sampling Technique (GREST): On-the-Fly Data-Driven Discovery of and Enhanced Sampling in Slow Collective Variables
J. Phys. Chem. A, 2023, 127, 15, 3497-3517
10.1021/acs.jpca.3c00505
- Rappoport, D.; Bekoe, S.; Mohanam, L.N.; Le, S.; George, N.; & Furche, F.
Libkrylov, a Modular Open-Source Software Library for Extremely Large On-the-Fly Matrix Computations
Journal of Computational Chemistry, 2023, 44(11), 1105-1118
10.1002/jcc.27068
- Pitman, M.; Hahn, D.F.; Tresadern, G.; & Mobley, D.L.
To Design Scalable Free Energy Perturbation Networks, Optimal Is not Enough
J. Chem. Inf. Model, 2023, 63(6), 1776-1793
10.1021/acs.jcim.2c01579
- Hsu, W.-T.; Piomponi, V.; Merz, P.T., Bussi, G.; & Shirts, M.R.
Alchemical Metadynamics: Adding Alchemical Variables to Metadynamics to Enhance Sampling in Free Energy Calculations
J. Chem. Theory Comput, 2023, 19(6), 1805–1817
10.1021/acs.jctc.2c01258
- Ojha, A.A.; Thakur, S.; & Amaro, R. E.
DeepWEST: Deep Learning of Kinetic Models with the Weighted Ensemble Simulation Toolkit for Enhanced Sampling
J. Chem. Theory Comput. 2023, 19, 4, 1342-1359.
10.1021/acs.jctc.2c00282
- Burgin, T.; Ellis, S.; & Mayes, H.B.
ATESA: An Automated Aimless Shooting Workflow
J. Chem. Theory Comput., 2023, 19, 1, 235–244
10.1021/acs.jctc.2c00543
- Eastman, P.; Behara, P.K.; Dodson, D.L.; Galvelis, R.; Herr, J.E.; Horton, J.T; Mao, Y.; Chodera, J.D.; Pritchard, B.P.; Wang, Y.; De Fabritiis, G.; & Markland, T.E.
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Scientific Data, 2023, Volume. 10, Article #11
s41597-022-01882-6
- Schwalbe, S.; Trepte, K.; & Lehtola, S.
How Good are Recent Density Functionals for Ground and Excited States of One-Electron Systems?
J. Chem. Phys., 2022, 157, 17411.
10.1063/5.0120515
- Banerjee, S.; Fortunato, M.T.; Xue, C.; Huang, J.; Sokolov, A.Y.; & Turro, C.
Electrochemical Strategy for Proton Relay Installation Enhances the Activity of a Hydrogen Evolution Electrocatalyst
J. Am. Chem. Soc., 2022, 144, 44, 20267–20277.
10.1021/jacs.2c06011
- Gaidai, I.; Babikov, D.; Teplukhin A.; Kendrick, B.K.; Mniszewski, S.M.; Zhang, Y.; Tretiak, S.; & Dub, P.A.
Molecular dynamics on quantum annealers
Scientific Reports, 2022, 12, Article 16824
www.nature.com/articles/s41598-022-21163-x#citeas
- Lehtola, S.; & Marques, M.A.L.
Many recent density functionals are numerically ill-behaved
J. Chem Phys, 2022, 157, 174114
10.1063/5.0121187
- McDonald, A.R.; Nash, J.A.; Nerenberg, P.S.; Ball, K.A.; Sode, O.; Foley IV, J.J.; Windus, T.L.; Crawford, T.D.
Building Capacity for Undergraduate Education and Training in Computational Molecular Science: A Collaboration between the MERCURY Consortium and the Molecular Sciences Software Institute
Quantum Chemistry, 2022, 120, 20, e26359
10.1002/qua.26359
- Craig, P.A.; Nash, J.A.; & Crawford, T.D.
Python Scripting for Biochemistry and Molecular Biology in Jupyter Notebooks
Biochemistry and Molecular Biology Education, 2022, 50, 5, 479-482.
10.1002/bmb.21676
- Westheimer, B. M. & Gordon M.S.
General, Rigorous Approach for the Treatment of Interfragment Covalent Bonds
The Journal of Physical Chemistry A, 2022, 126, 39, 6995-7006
10.1021/acs.jpca.2c04015
- Gibson, J.; Hire, A.; & Hennig, R.G.
Data-augmentation for graph neural network learning of the relaxed energies of unrelaxed structures
npj Computational Materials, 2022, Article number 211
www.nature.com/articles/s41524-022-00891-8
- Smith, James E.T.; Lee, J.; & Sharma, S.
Near-exact nuclear gradients of complete active space self-consistent field wave functions
Journal of Chemical Physics, 2022, 157, 094104
10.1063/5.0085515
- Stahl, T.L.; Banerjee, S.; & Sokolov, A. Y.
Quantifying and reducing spin contamination in algebraic diagrammatic construction theory of charged excitations
Journal of Chemical Physics, 2022, 157, 044106
10.1063/5.0097333
- Banerjee, S. & Sokolov, A.
Non-Dyson Algebraic Diagrammatic Construction Theory for Charged Excitations in Solids
J. Chem. Theory Comput, 2022, 18, 9
10.1021/acs.jctc.2c00565
- Stair, N.H. & Evengelista, A.
QForte: An Efficient State-Vector Emulator and Quantum Algorithms Library for Molecular Electronic Structure
J. Chem. Theory Comput. 2022, 18, 3
10.1021/acs.jctc.1c01155
- Duan, C.; Nandy A.; Adamji, H.; Roman-Leshkov, Y.; & Kulik, H.
Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis
J. Chem. Theory Comput. 2022, 18, 7, 4282–4292.
10.1021/acs.jctc.2c00331
- Schwalbe, S.; Trepte, K.; & Lehtola, S.
How Good are Recent Density Functionals for Ground and Excited States of One-Electron Systems?
Chem arXiv:2208.06482, 2022.
arxiv.org/abs/2208.06482
- Teale A, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov A, Crawford, T.D., et al. (70 authors)
DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science
Phys. Chem. Chem. Phys., 2022
pubs.rsc.org/en/content/articlelanding/2022/cp/d2cp02827a
- Irrgang, M.E.; Davis, C.; & Kasson, P.M.
gmxapi: A GROMACS-native Python interface for molecular dynamics with ensemble and plugin support
PLoS Comput Biol, 2022, 18(2) Feb.
ncbi.nlm.nih.gov/pmc/articles/PMC8880871/
- Duan, C.; Chu, D.B.K.; Nandy A.; Adamji, H.; & Kulik, H.
Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost
Chemical Science, 2022, 17.
rsc.org/en/content/articlelanding/2022/SC/D2SC00393G
- Duan, C.; Nandy, A.; Adamji, H. Roman-Leshkov, Y. & Kulik, H.
Machine learning models predict calculation outcomes with the transferability necessary for computational catalysis
Chem arXiv, 2022
arxiv.org/abs/2203.01276
- Pathak, S.; Rackers, J.A.; Lopez, I.E.; Fernandez, R.L.; Lee, A.J.; Bricker, W.P.; & Lehtola, S.
Accurate Hellmann-FeynmanForces with Optimized Aton-Centered Gaussian Basis Sets
Chem arXiv, 2022
arxiv.org/abs/2207.03587
- Lehtola, S. & Karttunen, A.J.
Free and open source software for computational chemistry education
WIREs Computational Molecular Science, 2022
doi/10.1002/wcms.1610
- Lehtola, S.; & Marques, M.A.L.
Many Recent Density Functionals are Numerically Ill-Behaved
Chem arXiv, 2022
arxiv.org/abs/2206.14062
- Ringer McDonald, A.; Roberts, R.; Koeppe, J.R.; & Hall, B.L.
Undergraduate Structural Biology Education: A shift from Users to Developers of Computation and Simulation Tools
Current Opinion in Structural Biology, 2022, 72, 39-45
10.1016/j.sbi.2021.07.012
- Nash, J.A.; Mostafanejad, M.; Crawford, T.D.; & Ringer McDonald, A.
MolSSI Education: Empowering the Next Generation of Computational Molecular Scientists
Computing in Science and Engineering, 2022, April.
10.22541/au.164910777.74730983/v1
- Lehtola, S.
Straightforward and Accurate Automatic Auxiliary Basis Set Generation for Molecular Calculations with Atomic Orbital Basis Sets
J. Chem. Theory Comput. 2021, 17, 11
10.1021/acs.jctc.1c00607
- Kidder, K.M.; Szukalo, R.J.; & Noid, W.G. (with contributions from Lebold K.)
Energetic and entropic considerations for coarse-graining
The European Physical Journal B, 2021, 94(153).
10.1140/epjb/s10051-021-00153-4
- Smith, D.G.A., Lolinco, A.T. . . . Burns, L.A.
Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and interoperability among computational chemistry programs
Journal of Chemical Physics, 2021, 155, 20
10.1063/5.0059356
- Westheimer, M.B. and Gordon, M.S.
Scalable ab initio fragmentation methods based on a truncated expansion of the non-orthogonal molecular orbital model
Journal of Chemical Physics, 2021, 155, 15
10.1063/5.0064864
- Gururangan, K.; Deustua, J. E.; Shen, J.; & Piecuch, P.
High-level coupled-cluster energetics by merging moment expansions with selected configuration interaction
Journal of Chemical Physics, 2021, 155(17), 174114
10.1063/5.0064400?journalCode=jcp
- Sarka, Janos; & Poirier, B.
Hitting the Trifecta: How to Simultaneously Push the Limits of Schrödinger Solution with Respect to System Size, Convergence Accuracy, and Number of Computed States
J. Chem. Theory Comput. 2021, 17, 12, 7732–7744
10.1021/acs.jctc.1c00824
- Qiu, Y.; Smith, D.G.A.; Boothroyd, S.; Hang, J.; Hahn, D.F.; Wagner, J.; Bannan, C.C.; Gokey, T.; Lim, V.T.; Stern, C.D.; Rizzi, A.; Tjanaka, B.; Tresaden, G.; Lucase, X.; Shirts, M.R.; Gilson, M.K.; Chodera, J.D.; Bayly, C.I.; Mobley, D.L.; & Wang, L.P.
Development and Benchmarking of Open Force Field v1.0.0—the Parsley Small-Molecule Force Field
J. Chem, Theory Comput. 2021, 17, 10 6262-6280
10.1021/acs.jctc.1c00571
- Dick, S.; & Fernandez-Serra, M.
Highly Accurate and Constrained Density Functional Obtained with Differentiable Programming
Physical Review B, 2021 104, L161109
10.1103/PhysRevB.104.L161109
- Duan, C.; Chen, S.; Taylor, M.G.; Liu, F.; & Kulik, H.J.
Machine Learning to Tame Divergent Density Functional Approximations: A New Path to Consensus Materials Design Principles
Chemical Science, 2021, 12, 13021-13036
10.1039/D1SC03701C
- Dana, A.G.; Wu, H.; Ranasinghe, D.S.; Pickard IV, F.C.; Wood, G.P.F.; Zelesky, T.; Sluggett, G.W.; Mustakis, J.; & Green, W.H.
Kinetic Modeling of API Oxidation: (1) The AIBN/H2O/CH3OH Radical “Soup”
Mol. Pharmaceutics, 2021, 18, 8, 3037-3049
10.1021/acs.molpharmaceut.1c00261
- Shao, X.; Mi, W.; & Pavanello
Revised Huang-Carter Nonlocal Kinetic Energy Functional for Semiconductors and Their Surfaces
Physical Review B, 2021, 104, 045118
10.1103/PhysRevB.104.045118
- Gayday, I.; Teplukhin, A.; Moussa, J.; & Babikov, D.
SpectrumSDT: A Program for Parallel Calculation of Coupled Rotational-Vibrational Energies and Lifetimes of Bound States and Scattering Resonances in Triantomic Systems
Computer Physics Communications, 2021, 267, 108084
S001046552100196X?via%3Dihub
- Stair, N.H.; & Evangelista, F.A.
Simulating Many-Body Systems with a Projective Quantum Eigensolver
PRX Quantum, 2021, 2, 030301
10.1103/PRXQuantum.2.030301
- Nash, J.A. & Pritchard, B.P.
Coding, Software Engineering, and Molecular Science — Teaching a Multidisciplinary Course to Chemistry Graduate Students
From Teaching Programming across the Chemistry Curriculum, 2021, ACS Symposium Series, Vol. 1387, Chapter 11, pp. 159-171
https://pubs.acs.org/doi/full/10.1021/bk-2021-1387.ch011
- Nandy, A.; Duanb, C.; Taylor, M.G.; Liu, F.; Steeves, A.H. & Kulik, H.J.
Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning
Chemical Reviews, 2021, 121(16), 9927-10000
10.1021/acs.chemrev.1c00347
- Magoulas, I,; Gururangan, K.; Piecuch, P.; Deustua, J. E.; & Shen, J.
Is Externally Corrected Coupled Cluster Always Better Than the Underlying Truncated Configuration Interaction?
J. Chem. Theory Comput., 2021, 17(7), 4006-4027.
10.1021/acs.jctc.1c00181
- Yao, Y. & Umrigar, C.J.
Orbital Optimization in Selected Configuration Interaction Methods
J. Chem. Theory Comput., 2021, 17(7), 4183-4194.
10.1021/acs.jctc.1c00385
- Kodrycka, M.; & Patkowski, K.
Efficient Density-Fitted Explicitly Correlated Dispersion and Exchange Dispersion Energies
J. Chem. Theory Comput., 2021, 17(3), 1435-1456
10.1021/acs.jctc.0c01158
- Clark, A.E.; Adams, H.; Hernandez, R.; Krylov, A.; Niklasson, A.M.N.; Sarupria, S.; Wang, Y.; Wild, S.M.; Yang, Q.
The Middle Science: Traversing Scle in Complex Many-Body Systems
ACS Centr. Sci. 2021, 7, 8, 1271-1287
10.1021/acscentsci.1c00685
- Yao, Y.; Giner, E.; Anderson, T.A.; Tolouse, J.; & Umrigar
Accurate energies of transition metal atoms, ions, and monoxides using selected configuration interaction and density-based basis-set correction
The Journal of Chemical Physics, 2021, 155, 20414
10.1063/5.0072296
- Kidder, K.M.; Szukalo, R.J. & Noid, W.G.
Energetic and Entropic Considerations for Coarse-Graining
European Physical Journal B, 2021, 94,7
10.1140/epjb/s10051-021-00153-4
- Banerjee, S.; & Sokolov, A.Y.
Efficient implementation of the single-reference algebraic diagrammatic construction theory for charged excitations: Applications to the TEMPO radical and DNA base pairs
Journal of Chemical Physics, 2021, 154(7), 124103
10.1063/5.0040317
- Deustua, J.E.; Shen, J.; Piecuch, P.
High-level coupled-cluster energetics by Monte Carlo sampling and moment expansions: Further details and comparisons
Journal of Chemical Physics, 2021, 154(12), 074105
10.1063/5.0045468
- Babikov, D.; Grushnikova E.; Gayday, I.; & Teplukhin, A.
Four Isotope-Labeled Recombination Pathways of Ozone Formation
Molecules, 2021, 26, 5
10.3390/molecules26051289
- Barnes, T.; Marin-Rimoldi, E.; Ellis, S.; Crawford, T.D.
The MolSSI Driver Interface Project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes
Computer Physics Communications, 2021, 261, 107688
10.1016/j.cpc.2020.107688
- Janet, J.P.; Duan, C.; Nandy, A.; Liu, F.; Kulik, H.J.
Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design
Acc. Chem. Res. 2021, 54, 3, 532–545
10.1021/acs.accounts.0c00686
- Husch, T.; Sun, J.; Cheng, L.; Lee, S.J.R.; Miller, T.F.
Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states
Journal of Chemical Physics, 2021, 154(6), 064108
10.1063/5.0032362
- Nash, J.; Barnes, T.; & Vaissier Welborn, V.
ELECTRIC: Electric fields Leveraged from multipole Expansion Calculations in Tinker Rapid Interface Code
Journal of Open Source Software (JOSS), 2020, 5(54), 2576
10.21105/joss.02576
- McDonald, A.R.; Nash, J.A.; Nerenberg, P.S.; Ball, K.A.; Sode, O.; Foley IV, J.J.; Windus, T.L.; Crawford, T.D.
Building Capacity for Undergraduate Education and Training in Computational Molecular Science: A Collaboration between the MERCURY Consortium and the Molecular Sciences Software Institute
Quantum Chemistry, 2022, 120, 20, e26359
10.1002/qua.26359
- Duan, C.; Liu, F.; Nandy, A, & Kulik, H.J.
Data-Driven Approaches Can Overcome the Cost-Accuracy Trade-Off in Multireference Diagnostics
J. Chem. Theory Comput., 2020, 16, 4376-4387.
10.1021/acs.jctc.0c00358
- Gayday, I.; Grushnikova, E.; & Babikov, D.
Influence of the Coriolis Effect on the Properties of Scattering Resonances in Symmetric and Asymmetric Isotopomers of Ozone
Physical Chemistry Chemical Physics, 2020, 22, 27560-27571.
10.1039/D0CP05060A
- Riera, M.; Hirales, A.; Ghosh, R.; & Paesani, F.
Data-Driven Many-Body Model with Chemical Accuracy for CH4/H2O Mixtures
The Journal of Physical Chemistry B, 2020, 11207-11221
10.1021/acs.jpcb.0c08728
- Eriksen, J.J.; Anderson, T.A.; Deustua, J.E. ……. Gauss, J. (24 authors)
The Ground State Electronic Energy of Benzene
J. Phys. Chem. Lett., 2020, 11(20), 8922.
10.1021/acs.jpclett.0c02621
- Yao, Y.; Giner, E.; Li, J.; Toulouse, J.; & Umrigar, C.J.
Almost exact energies for the Gaussian-2 set with the semistochastic heat-bath configuration interaction method
Journal of Chemical Physics, 2020, 153(12), 4117
10.1063/5.0018577
- Zagorec-Marks, W.; Smith J.E.T.; Foreman, M.M.; Sharma, S.; & Weber, J.M.
Intrinsic Electronic Spectra of Cryogenically Prepared Protoporphyrin IX Ions in Vacuo: Deprotonation-induced Stark Shifts
Physical Chemistry Chemical Physics, 2020, 36.
10.1039/d0cp03614e
- Stair, N.H.; & Evangelista, F. A.
Exploring Hilbert Space on a Budget: Novel Benchmark Set and Performance Metric for Testing Electronic Structure Methods in the Regime of Strong Correlation
Journal of Chemical Physics, 2020, 153(10), 4108
10.1063/5.0014928
- Hanwell, M.D.; Harris, C.; Genova, A.; Haghighatlari, M.; El Khatib, M.; Avery, P.; Hachmann, J.; & de Jong, W.A.
Open Chemistry, JupyterLab, REST, and Quantum Chemistry
International Journal of Quantum Chemistry, 2020, e26472
10.1002/qua.26472
- Sidky, H.; Chen, W.; & Ferguson, A.L.
Molecular Latent Space Simulators
Chemical Science, 2020, 35.
10.1039/D0SC03635H
- Yuwono, S.H.; Chakraborty, A.; Deustua, J.E.; Shen, J.; & Piecuch, P.
Accelerating Convergence of Equation-of-Motion Coupled-Cluster Computations Using the Semi-stochastic CC(P;Q) Formalism
Molecular Physics, 2020, Article e1817592
10.1080/00268976.2020.1817592
- Duan C.; Liu, F.; Nandy, A.; & Kulik, H.J.
Semi-supervised Machine Learning Enables the Robust Detection of Multirefence Character at Low Cost
J. Phys. Chem. Lett., 2020, 11(16), 6640.
10.1021/acs.jpclett.0c02018
- Sezginel, K.T. & Wilmer, C.E.
Modeling Diffusion of Nanocars on a Cu (110) Surface
Molecular Systems Design & Engineering, 2020, 7
10.1039/C9ME00171A
- Gao, X.; Ramezanghorbani, F.; Isayev, O.; Smith, J.S.; Roitberg, A.
TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials
J. Chem. Inf. Model., 2020, 60(7), 3408-3415.
10.1021/acs.jcim.0c00451
- Sun, Q.; Xhang, X.; Banerjee, S.; Bao, P.; Barbry, M., et al.
Recent Developments in the PySCF Program Package
Journal of Chemical Physics, 2020, 153(2)
10.1063/5.0006074
- Dick, S. & Fernandez-Serra, M.
Machine Learning Accurate Exchange and Correlation Functionals of the Electronic Density
Nature Communications, 2020, 11, 3509
10.1038/s41467-020-17265-7
- Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.N,; Ward, L.; Ellis, S.; Pritchard, B.; Crawford, T.D.
The MolSSI QCArchive Project: An Open-source Platform to Compute, Organize, and Share Quantum Chemistry Data
WIREs Computational Molecular Science, 2020
10.1002/wcms.1491
- Barca, G.M.J. … Deustua, J.E.; et al. (42 authors)
Recent Developments in the General Atomic and Molecular Electronic Structure System
Journal of Chemical Physics, 2020, 152(15), 4102
10.1063/5.0005188
- Qiu, Y.; Smith, D.G.A.; Stern, C.D.; Feng, M.; Jang, H.; and Wang, L.-P.
Driving Torsion Scans with Wavefront Propagation
Journal of Chemical Physics, 2020, 152(24), 4116.
10.1063/5.0009232
- Yao, Y.; Umrigar, J.; Elser, V.
Chemistry of the Spin-½ Kagome Heisenberg Antiferromagnet
Physical Review B 2020, 102.
10.1103/PhysRevB.102.014413
- Oliveira, M.J. T.; ….. Smith, D.G.A.,; Wu, V. W-Z.
The CECAM Electronic Structure Library and the Modular Software Development Paradigm
Journal of Chemical Physics, 2020, 152(2).
10.1063/5.0012901
- Vyas, R.; Dice, B.D.; Harper, E.S.; Spellings, M.P.; Anderson, J.A.; Glotzer, S.C.
freud: A Software Suite for High Throughput Analysis of Particle Simulation Data
Computer Physics Communications 2020, 254
10.1016/j.cpc.2020.107275
- Lim, N.M.; Osato, M.; Warren, G. L.; Mobley, D. L.
Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations
Journal of Chemical Theory and Computation 2020, 16(4), 2778-2794
10.1021/acs.jctc.9b01096
- Riera, M.; Yeh, E.P.; Paesani, F.
Data-Driven Many-Body Models for Molecular Fluids: CO2/H2O Mixtures as a Case Study
Journal of Chemical Theory and Computation 2020, 16(4), 2246-2257
10.1021/acs.jctc.9b01175
- Sidky, H.; Chen, W.; & Ferguson, A.L.
Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation
Molecular Physics 2020, 18(5)
10.1080/00268976.2020.1737742
- Mostafanejad, M.; Liebenthal, M.D.; DePrince, A. E.
Global Hybrid Multiconfiguration Pair-Density Functional Theory.
Journal of Chemical Theory and Computation 2020,16(4), 2274-2283
10.1021/acs.jctc.9b01178
- Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.; Ward, L.; Ellis, S.J.; Crawford, T.D.
The MolSSI QCArchive Project: An open-source platform to compute, organize, and share quantum chemistry data.
Chem arXiv, 2020
https://chemrxiv.org/s/22566e14d96e43f7611a
- Haghighatlari, M.; Vishwakarma, G.; Altarawy, D.; Subramanian, R.; Kota, B. U.; Sonpal, A.; Setlur, S.; Hachmann, J.
ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data
WIREs Computational Molecular Science 2020, e1458
10.1002/wcms.1458
- Stair, N. H.; Huang, R.; Evangelista, F. A.
A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons
Journal of Chemical Theory and Computation 2020,16(4), 2236-2245
10.1021/acs.jctc.9b01125
- Sezginel, K. B.; Wilmer, C. E.
Modeling diffusion of nanocars on a Cu (110) surface
Molecular Systems Design & Engineering 2020, XXX, XXX
10.1039/c9me00171a
- Mullinax, J.W.; Maradzike, E.; Koulias, L.N.; Mostafanejad, M.; Epifanovsky, E.; Gidofalvi, G.; DePrince, A. E.
Heterogeneous CPU + GPU Algorim for Variational Two-Electron Reduced-Density Matrix-Driven Complete Active-Space Self-Consistent Ffield Theory.
Journal of Chemical Theory and Computation 2019, 15(11) 6164-6178
10.1021/acs.jctc.9b00768
- Deustua, J.E.; Yuwono, S.H.; Shen, J.; & Piecuch, P.
Accurate excited-state energetics by a combination of Monte Carlo sampling and equation-of-motion coupled-cluster computations
Journal of Chemical Physics, 2019, 150, 11101
10.1063/1.5090346
- Mostafanejad, M.; Haney, J.; DePrince, A. E.
Kinetic-energy-based error quantification in Kohn–Sham density functional theory
Physical Chemistry Chemical Physics 2019, 21(48), 26492-26501
10.1039/c9cp04595c
- Afzal, M. A. F.; Sonpal, A.; Haghighatlari, M.; Schultz, A. J.; Hachmann, J.
A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules
Chemical Science 2019, 10, 8374-8383
10.1039/c9sc02677k
- Riera, M.; Lambros, E.; Nguyen, T. T.; Götz, A. W.; Paesani, F.
Low-order many-body interactions determine the local structure of liquid water
Chemical Science 2019, 10, 8211-8218
10.1039/c9sc03291f
- Sidky, H.; Chen, W.; Ferguson, A. L.
High-Resolution Markov State Models for the Dynamics of Trp-Cage Miniprotein Constructed Over Slow Folding Modes Identified by State-Free Reversible VAMPnets
The Journal of Physical Chemistry B 2019, 123, 7999-8009
10.1021/acs.jpcb.9b05578
- Tazhigulov, R. N.; Gayvert, J. R.; Wei, M.; Bravaya, K. B.
eMap: A Web Application for Identifying and Visualizing Electron or Hole Hopping Pathways in Proteins
The Journal of Physical Chemistry B 2019, 123, 6946-6951
10.1021/acs.jpcb.9b04816
- Chen, W.; Sidky, H.; Ferguson, A. L.
Capabilities and limitations of time-lagged autoencoders for slow mode discovery in dynamical systems
The Journal of Chemical Physics 2019, 151, 064123
10.1063/1.5112048
- Zhang, B.; Altarawy, D.; Barnes, T.; Turney, J. M.; Schaefer, H. F.
Janus: An Extensible Open-Source Software Package for Adaptive QM/MM Methods
Journal of Chemical Theory and Computation 2019, 15, 4362-4373
10.1021/acs.jctc.9b00182
- Abbott, A. S.; Turney, J. M.; Zhang, B.; Smith, D. G. A.; Altarawy, D.; Schaefer, H. F.
PES-Learn: An Open-Source Software Package for the Automated Generation of Machine Learning Models of Molecular Potential Energy Surfaces
Journal of Chemical Theory and Computation 2019, 15, 4386-4398
10.1021/acs.jctc.9b00312
- Takeshita, T. Y.; Dou, W.; Smith, D. G. A.; de Jong, W. A.; Baer, R.; Neuhauser, D.; Rabani, E.
Stochastic resolution of identity second-order Matsubara Green’s function theory
The Journal of Chemical Physics 2019, 151, 044114
10.1063/1.5108840
- Carleo, G.; Choo, K.; Hofmann, D.; Smith, J. E.; Westerhout, T.; Alet, F.; Davis, E. J.; Efthymiou, S.; Glasser, I.; Lin, S.; Mauri, M.; Mazzola, G.; Mendl, C. B.; van Nieuwenburg, E.; O’Reilly, O.; Théveniaut, H.; Torlai, G.; Vicentini, F.; Wietek, A.
NetKet: A machine learning toolkit for many-body quantum systems
SoftwareX 2019, 10, 100311
10.1016/j.softx.2019.100311
- Chen, W.; Sidky, H.; Ferguson, A. L.
Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets
The Journal of Chemical Physics 2019, 150, 214114
10.1063/1.5092521
- Lebold, K. M.; Noid, W. G.
Dual approach for effective potentials that accurately model structure and energetics
The Journal of Chemical Physics 2019, 150, 234107
10.1063/1.5094330
- Hays, J. M.; Cafiso, D. S.; Kasson, P. M.
Hybrid Refinement of Heterogeneous Conformational Ensembles Using Spectroscopic Data
The Journal of Physical Chemistry Letters 2019, 10, 3410-3414
10.1021/acs.jpclett.9b01407
- Afzal, M. A. F.; Haghighatlari, M.; Ganesh, S. P.; Cheng, C.; Hachmann, J.
Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining
The Journal of Physical Chemistry C 2019, 123, 14610-14618
10.1021/acs.jpcc.9b01147
- Sun, S.; Williams-Young, D.; Li, X.
An ab Initio Linear Response Method for Computing Magnetic Circular Dichroism Spectra with Nonperturbative Treatment of Magnetic Field
Journal of Chemical Theory and Computation 2019, 15, 3162-3169
10.1021/acs.jctc.9b00095
- Vu, O.; Mendenhall, J.; Altarawy, D.; Meiler, J.
BCL::Mol2D—a robust atom environment descriptor for QSAR modeling and lead optimization
Journal of Computer-Aided Molecular Design 2019, 33, 477-486
10.1007/s10822-019-00199-8
- Bajaj, P.; Riera, M.; Lin, J. K.; Mendoza Montijo, Y. E.; Gazca, J.; Paesani, F.
Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters
The Journal of Physical Chemistry A 2019, 123, 2843-2852
10.1021/acs.jpca.9b00816
- Nocito, D.; Beran, G. J. O.
Reduced computational cost of polarizable force fields by a modification of the always stable predictor-corrector
The Journal of Chemical Physics 2019, 150, 151103
10.1063/1.5092133
- Haghighatlari, M.; Hachmann, J.
Advances of machine learning in molecular modeling and simulation
Current Opinion in Chemical Engineering 2019, 23, 51-57
10.1016/j.coche.2019.02.009
- Richard, R. M.; Bertoni, C.; Boschen, J. S.; Keipert, K.; Pritchard, B.; Valeev, E. F.; Harrison, R. J.; de Jong, W. A.; Windus, T. L.
Developing a Computational Chemistry Framework for the Exascale Era
Computing in Science & Engineering 2019, 21, 48-58
10.1109/mcse.2018.2884921
- Zhuang, D.; Riera, M.; Schenter, G. K.; Fulton, J. L.; Paesani, F.
Many-Body Effects Determine the Local Hydration Structure of Cs+in Solution
The Journal of Physical Chemistry Letters 2019, 10, 406-412
10.1021/acs.jpclett.8b03829
- Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L.
New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community
Journal of Chemical Information and Modeling 2019, 59, 4814-4820
10.1021/acs.jcim.9b00725
- Kodrycka, M.; Holzer, C.; Klopper, W.; Patkowski, K.
Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory
Journal of Chemical Theory and Computation 2019, 15, 5965-5986
10.1021/acs.jctc.9b00547
- Lebold, K. M.; Noid, W. G.
Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability
The Journal of Chemical Physics 2019, 151, 164113
10.1063/1.5125246
- Provazza, J.; Coker, D. F.
Multi-level description of the vibronic dynamics of open quantum systems
The Journal of Chemical Physics 2019, 151, 154114
10.1063/1.5120253
- Dick, S.; Fernandez-Serra, M.
Learning from the density to correct total energy and forces in first principle simulations
The Journal of Chemical Physics 2019, 151, 144102
10.1063/1.5114618
- Sun, S.; Williams-Young, D. B.; Stetina, T. F.; Li, X.
Generalized Hartree–Fock with Nonperturbative Treatment of Strong Magnetic Fields: Application to Molecular Spin Phase Transitions
Journal of Chemical Theory and Computation 2019, 15, 348-356
10.1021/acs.jctc.8b01140
- Zanette, C.; Bannan, C. C.; Bayly, C. I.; Fass, J.; Gilson, M. K.; Shirts, M. R.; Chodera, J. D.; Mobley, D. L.
Toward Learned Chemical Perception of Force Field Typing Rules
Journal of Chemical Theory and Computation 2019, 15, 402-423
10.1021/acs.jctc.8b00821
- Lebold, K. M.; Noid, W. G.
Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids
The Journal of Chemical Physics 2019, 150, 014104
10.1063/1.5050509
- Paesani, F.; Bajaj, P.; Riera, M.
Chemical accuracy in modeling halide ion hydration from many-body representations
Advances in Physics: X 2019, 4, 1631212
10.1080/23746149.2019.1631212
- Sunseri, J.; King, J. E.; Francoeur, P. G.; Koes, D. R.
Convolutional neural network scoring and minimization in the D3R 2017 community challenge
Journal of Computer-Aided Molecular Design 2019, 33, 19-34
10.1007/s10822-018-0133-y
- Riera, M.; Brown, S. E.; Paesani, F.
Isomeric Equilibria, Nuclear Quantum Effects, and Vibrational Spectra of M+(H2O)n=1–3 Clusters, with M = Li, Na, K, Rb, and Cs, through Many-Body Representations
The Journal of Physical Chemistry A 2018, 122, 5811-5821
10.1021/acs.jpca.8b04106
- Smith, D. G. A.; Burns, L. A.; Sirianni, D. A.; Nascimento, D. R.; Kumar, A.; James, A. M.; Schriber, J. B.; Zhang, T.; Zhang, B.; Abbott, A. S.; Berquist, E. J.; Lechner, M. H.; Cunha, L. A.; Heide, A. G.; Waldrop, J. M.; Takeshita, T. Y.; Alenaizan, A.; Neuhauser, D.; King, R. A.; Simmonett, A. C.; Turney, J. M.; Schaefer, H. F.; Evangelista, F. A.; DePrince, A. E.; Crawford, T. D.; Patkowski, K.; Sherrill, C. D.
Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development
Journal of Chemical Theory and Computation 2018, 14, 3504-3511
10.1021/acs.jctc.8b00286
- Provazza, J.; Coker, D. F.
Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
The Journal of Chemical Physics 2018, 148, 181102
10.1063/1.5031788
- Avery, P.; Ludowieg, H.; Autschbach, J.; Zurek, E.
Extended Hückel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer
Journal of Chemical Education 2018, 95, 331-337
10.1021/acs.jchemed.7b00698
- Irrgang, M. E.; Hays, J. M.; Kasson, P. M.
gmxapi: A high-level interface for advanced control and extension of molecular dynamics simulations
Bioinformatics 2018, 34, 3945-3947
10.1093/bioinformatics/bty484
- Krylov, A.; Windus, T. L.; Barnes, T.; Marin-Rimoldi, E.; Nash, J. A.; Pritchard, B.; Smith, D. G. A.; Altarawy, D.; Saxe, P.; Clementi, C.; Crawford, T. D.; Harrison, R. J.; Jha, S.; Pande, V. S.; Head-Gordon, T.
Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science
The Journal of Chemical Physics 2018, 149, 180901
10.1063/1.5052551
- Bannan, C. C.; Mobley, D. L.; Skillman, A. G.
SAMPL6 challenge results from $$pK_a$$ p K a predictions based on a general Gaussian process model
Journal of Computer-Aided Molecular Design 2018, 32, 1165-1177
10.1007/s10822-018-0169-z