Publications from The MolSSI


In our continuing effort to expand MolSSI’s outreach and enhance our benefit to the community, we provide a repository of MolSSI-sponsored publications. (Bolded names indicate a MOlSSI Software Fellow, Scientist, or member of the Board of Directors.). For an inventory of the MolSSI’s most highly cited publications, visit our Google Scholar listing!

  • Miller, E.R.; & Parker, S.M.
    Numerically stable resonating Hartree-Fock
    The Journal of Chemical Physics, 2025, 162(10), 104115
    https://doi.org/10.1063/5.0246790
  • Leung, J.M.G.; Frazee, N.C.; Brace, A.; Bogetti, A.T.; Ramanathan, A.; & Chong, L.T.
    Unsupervised Learning of Progress Coordinates during Weighted Ensemble Simulations: Application to NTL9 Protein Folding
    Journal of Chemical Theory and Computation, 2025, 12(7), 3691-3699.
    https://doi.org/10.1021/acs.jctc.4c01136
  • Sreenivasan, A.N.; Petix, C.L.; Sherman, Z.M.; & Howard, M.P.
    relentless: Transparent, reproducible molecular dynamics simulations for optimization
    The Journal of Chemical Physics2024, 161, 212502
    10.1063/5.0233683
  • Blum, V.; Asahi, R.; . . . Burns, L.A.; Crawford, T.D.; . . . Lehtola, S.; . . . Nash. J.A.; Moussa, J.; . . . Pritchard. B.P.; & Windus, T.L. (51 co-authors)
    Roadmap on methods and software for electronic structure based simulations in chemistry and materials
    Electronic Structure2024, 6, 042501
    10.1088/2516-1075/ad48ec
  • Naden, L.N.; Nash, J.A.; Crawford, T.D.; & Ringer McDonald, A.
    Cookiecutter for Computational Molecular Sciences: A Best Practices Ready Python Project Generator
    Journal of Chemical Education2024, 101(11), 5105-5109
    10.1021/acs.jchemed.4c00793
  • Windom, Z.A.; Perera, A.; & Barlett, R.J.
    An “ultimate” coupled cluster method based entirely on T2
    J. Chem Phys., 2024, 161, 184106
    10.1063/5.0228453
  • Manderna, R.; Vu, N.; Foley IV, J.J.
    Comparing parameterized and self-consistent approaches to ab initio cavity quantum electrodynamics for electronic strong coupling
    The Journal of Chemical Physics2024, 161(17), 174105
    10.1063/5.0230565
  • Vizcarra, C.L.; Trainor, R.F.; Ringer McDonald, A.; Richardson, C.T.; Potoyan, D.; Nash, J.A.; Lundgren, B.; Luchko, T.; Hocky, G.M.; Foley IV, J.J.; Atherton, T.L. & Stokes, G.Y. 
    An interdisciplinary effort to integrate coding into science courses
    Nature Computational Sciences, 2024
    https://doi.org/10.1038/s43588-024-00708-2
  • Mostafanejad, M.
    Unification of Popular Artificial Neural Network Activation Functions
    Fractional Calculus and Applied Analysis2024
    https://doi.org/10.1007/s13540-024-00347-4
  • L.A. Burns; C.D. Sherrill; & P.B. Pritchard
    QCManyBody: A Flexible Implementation of the Many-Body Expansion
    The Journal of Chemical Physics2024, 161(15), 2501
    https://doi.org/10.1063/5.0231843
  • P. Eastman; B.P. Pritchard; J.D. Chodera; & T.E. Markland
    Nutmeg and SPICE: Models and Data for Biomolecular Machine Learning
    Journal of Chemical Theory and Computation2024, 20(19), 8583-8593.
    https://doi.org/10.1021/acs.jctc.4c00794
  • Hemmati, R.; Mostafanejad, M.; & Ortiz, J.V.
    Numerical analysis of the complete active-space extended Koopmans’s theorem
    The Journal of Chemical Physics2024, 161, 094101
    https://doi.org/10.1063/5.0226057
  • Thorpe, J.H.; Windom, Z. W.; Bartlett, R.J.; & Matthews, D.A.
    Factorized Quadruples and a Predictor of Higher-Level Correlation in Thermochemistry
    The Journal of Physical Chemistry A2024, 128(36), 7720-7732.
    https://doi.org/10.1021/acs.jpca.4c04460
  • Jiang, A.; Glick Z.L.; Poole, D.; Turney, J.M.; Sherrill, D.C.; & Schaefer, III, H.F.
    Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian
    The Journal of Chemical Physics2024, 161, 082502
    https://doi.org/10.1063/5.0219963
  • Windom, Z.W.; Claudino, D.; & Bartlett, R.J.
    An Attractive Way to Correct for Missing Singles Excitations in Unitary Coupled Cluster Doubles Theory
    Journal of Physical Chemistry A2024, 128(33), 7036-7045
    https://doi.org/10.1021/acs.jpca.4c03935
  • Miller, E.R.; Hoehn, S.J.; Kumar, A.; Jiang, D.; & Parker, S.M.
    Ultrafast photochemistry and electron diffraction for cyclobutanone in the S2 state: Surface hopping with time-dependent density functional theory
    The Journal of Chemical Physics2024, 161 (3), 034105
    https://doi.org/10.1063/5.0203679
  • Fuchs, W.; Ringer McDonald, A.; Guatam, A.; & Kazerouni, A.M. 
    Recommendations for Improving End-User Programming Education: A Case Study with Undergraduate Chemistry Students
    Journal of Chemical Education2024, 10(8), 3085-3096
    https://doi.org/10.1021/acs.jchemed.4c00219
  • Eastman, P.; Pritchard, B.P.; Chodera, J.D.; & Markland, T.E.
    Nutmeg and SPICE: Models and Data for Biomolecular Machine Learning
    Chem arXiv2024, 2406:13112
    https://doi.org/10.48550/arXiv.2406.13112
  • Barnes, T.A.; Ellis, S.; Chen, J.; Plimpton, S.J.; Nash, J.A.
    Plugin-based interoperability and ecosystem management for the MolSSI Driver Interface Project
    The Journal of Chemical Physics2024, 160, 214114
    https://doi.org/10.1063/5.0214279
  • Windom, Z.W.; Claudino, D.; Bartlett, R.J.
    A new “gold standard”: Perturbative triples corrections in unitary coupled cluster theory and prospects for quantum computing
    The Journal of Chemical Physics2024, 160, 214113
    https://doi.org/10.1063/5.0202567
  • Rios-Vargas, V.; Shao., X,; Trickey, S.B.; Pavanello, M. 
    Effective Wang-Teter kernels for improved orbital-free density functional theory simulations
    Physical Review B2024, 110, 085129
    https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.085129
  • Burgin, T.; Pollard, B.C.; Knott, B.C.; Mayes, H.B.; Crowley, M.F.; McGeehan, J.E.; Beckham, G.T.; & Woodcock. H.L.
    The reaction mechanism of the Ideonella sakaeinsis PETase enzyme
    Communications Chemistry2024, 7(65).
    10.1038/s42004-024-01154-x 
  • Lotthammer, J.M.; Ginell, G.M.; Griffith, D.; Emenecker, R.J. & Holehouse, A.S.
    Direct prediction of intrinsically disordered protein conformational properties from sequences
    Nature Methods2024
    10.1038/s41592-023-02159-5 
  • Zhang, T.; Banerjee, S.; Koulias, L.N.; Valeev, E.F.; DePrince III, A.E.; & Li, X.
    Dirac–Coulomb–Breit Molecular Mean-Field Exact-Two-Component Relativistic Equation-of-Motion Coupled-Cluster Theory
    The Journal of Physical Chemistry A., 2024, 128(17), 3408-3418
    https://doi.org/10.1021/acs.jpca.3c08167
  • Pavlicek, A.; Windom, Z.A.; Perera, A.; & Bartlett, R.J.
    A comparison of QTP functionals against coupled-cluster methods for EAs of small organic molecules
    J. Chem Phys., 2024, 160, 014106
    jcp/article/160/1/014106/2932469
  • Zhao, C.; Kleiman, D.E.; Shukla, D.
    Resolving binding pathways and solvation thermodynamics of plant hormone receptors
    Journal of Biological Chemistry2023299(12), 105456
    10.1016/j.jbc.2023.105456
  • Kleiman, D.E.; Nadeem, H.; & Shukla, D.
    Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning
    J. Phys. Chem. B2023, 127, 50, 10669-10681
    10.1021/acs.jpcb.3c04843
  • Pretti, E., & Shell, M.S.
    Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6
    Proceedings of the National Academy of Sciences2023, 120(48). 
    10.1073/pnas.2309995120
  • Jones, M.S.; Shmilovich, K.; & Ferguson, A.L.
    DiAMoNDBack: Diffusion-Denoising Autoregressive Model for Non-Deterministic Backmapping of Cα Protein Traces
    J. Chem. Theory Comput2023, 19, 21, 7908-7923
    10.1021/acs.jctc.3c00840
  • Peyton, B.G.; Wang, Z.; & Crawford, T.D.
    Reduced Scaling Real-Time Coupled Cluster Theory
    J. Phys. Chem. A2023, 127, 40, 8486-8499.
    10.1021/acs.jpca.3c05151
  • Lehtola, S., & Marques, M.A.L. 
    Reproducibility of density functional approximations: How new functionals should be reported
    The Journal of Chemical Physics2023, 114116 
    10.1063/5.0167763
  • Ojha, A.A., Votapka, L.W.; & Amaro. R.
    QMrebind: Incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through milestoning simulations
    Chemical Science2023
    10.1039/D3SC04195F
  • Li Manni, G. . . . Scott, T.R. . . .  Lehtola. S. . . .  Lindh, R. 
    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
    J. Chem. Theory Comput., 2023, 19, 20, 6933-6991.
    10.1021/acs.jctc.3c00182
  • Riera, M., Knight, C.; Bull-Vulpe, E.F.; Zhu, X; Agnew, H.; Smith, D.G.A.; Simmonett, A.C.; Paesani F. 
    MBX: A many-body energy and force calculator for data-driven many-body simulations
    The Journal of Chemical Physics2023, 159(5), 054802
    10.1063/5.0156036
  • Lehtola, S. & Marques, M.A.L. 
    Reproducibility of density functional approximations: How new functionals should be reported
    Chem arXiv: 2307.07474, 2023
    10.48550/arXiv.2307.07474
  • I. Quintela Matos & F.A. Escobedo
    Self-Assembling of Nonadditive Mixtures Containing Patchy Particles with Tunable Interactions
    J. Phys. Chem B., 2023, 127(41), 8982-8992
    10.1021/acs.jpcb.3c05302
  • Lalmansingh, J.M., Keeley, A.T., Ruff, K. M.; Pappu, R.V., & Holehouse, A.S.
    SOURSOP: A Python Package for the Analysis of Simulations of Intrinsically Disordered Proteins
    J. Chem. Theory Comput. 2023, 19(16), 5609-5620
    10.1021/acs.jctc.3c00190
  • Lehtola, S. 
    Automatic Generation of Accurate and Cost-efficient Auxiliary Basis Sets
    Chem arXiv:2306.11039, 2023
    arxiv.org/abs/2306.11039
  • Banerjee, S., & Sokolov, A. Y.
    Algebraic Diagrammatic Construction Theory for Simulating Charged Excited States and Photoelectron Spectra
    J. Chem. Theory Comput., 2023, 19, 11, 3037-3053
    10.1021/acs.jctc.3c00251
  • Windom, Z.A. & Bartlett, R.J.
    On the iterative diagonalization of matrices in quantum chemistry: Reconciling preconditioner design with Brillouin–Wigner perturbation theory
    Journal of Chemical Physics2023, 158, 134107
    10.1063/5.0139295
  • Moussa, J.E.
    Model selection in atomistic simulation
    The Journal of Chemical Physics2023, 158, 13, 134103
    10.1063/5.0142248 
  • Lehtola, S.
    Meta-GGA Density Functional Calculations on Atoms with Spherically Symmetric Densities in the Finite Element Formalism
    J. Chem. Theory Comput2023, 19, 9, 2502-2517
    10.1021/acs.jctc.3c00183
  • Shmilovich, K. & Ferguson A.L.
    Girsanov Reweighting Enhanced Sampling Technique (GREST): On-the-Fly Data-Driven Discovery of and Enhanced Sampling in Slow Collective Variables
    J. Phys. Chem. A2023, 127, 15, 3497-3517
    10.1021/acs.jpca.3c00505
  • Rappoport, D.; Bekoe, S.; Mohanam, L.N.; Le, S.; George, N.; & Furche, F.
    Libkrylov, a Modular Open-Source Software Library for Extremely Large On-the-Fly Matrix Computations
    Journal of Computational Chemistry2023, 44(11), 1105-1118
    10.1002/jcc.27068
  • Pitman, M.; Hahn, D.F.; Tresadern, G.; & Mobley, D.L.
    To Design Scalable Free Energy Perturbation Networks, Optimal Is not Enough
    J. Chem. Inf. Model2023, 63(6), 1776-1793
    10.1021/acs.jcim.2c01579 
  • Hsu, W.-T.; Piomponi, V.; Merz, P.T., Bussi, G.; & Shirts, M.R.
    Alchemical Metadynamics: Adding Alchemical Variables to Metadynamics to Enhance Sampling in Free Energy Calculations
    J. Chem. Theory Comput, 2023, 19(6), 1805–1817
    10.1021/acs.jctc.2c01258
  • Ojha, A.A.; Thakur, S.; & Amaro, R. E.
    DeepWEST: Deep Learning of Kinetic Models with the Weighted Ensemble Simulation Toolkit for Enhanced Sampling
    J. Chem. Theory Comput. 2023, 19, 4, 1342-1359.
    10.1021/acs.jctc.2c00282
  • Burgin, T.; Ellis, S.; & Mayes, H.B.
    ATESA: An Automated Aimless Shooting Workflow
    J. Chem. Theory Comput., 2023, 19, 1, 235–244
    10.1021/acs.jctc.2c00543
  • Eastman, P.; Behara, P.K.; Dodson, D.L.; Galvelis, R.; Herr, J.E.; Horton, J.T; Mao, Y.; Chodera, J.D.; Pritchard, B.P.; Wang, Y.; De Fabritiis, G.; & Markland, T.E.
    SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
    Scientific Data2023, Volume. 10, Article #11
    s41597-022-01882-6
  • Schwalbe, S.; Trepte, K.; & Lehtola, S.
    How Good are Recent Density Functionals for Ground and Excited States of One-Electron Systems?
    J. Chem. Phys., 2022, 157, 17411.
    10.1063/5.0120515
  • Westheimer, B. M. & Gordon M.S.
    General, Rigorous Approach for the Treatment of Interfragment Covalent Bonds
    The Journal of Physical Chemistry A2022126, 39, 6995-7006
    10.1021/acs.jpca.2c04015
  • Gibson, J.; Hire, A.; & Hennig, R.G.
    Data-augmentation for graph neural network learning of the relaxed energies of unrelaxed structures
    npj Computational Materials, 2022, Article number 211
    www.nature.com/articles/s41524-022-00891-8
  • Smith, James E.T.; Lee, J.; & Sharma, S.
    Near-exact nuclear gradients of complete active space self-consistent field wave functions
    Journal of Chemical Physics, 2022, 157, 094104
    10.1063/5.0085515
  • Stahl, T.L.; Banerjee, S.; & Sokolov, A. Y.
    Quantifying and reducing spin contamination in algebraic diagrammatic construction theory of charged excitations
    Journal of Chemical Physics, 2022, 157, 044106
    10.1063/5.0097333
  • Banerjee, S. & Sokolov, A.
    Non-Dyson Algebraic Diagrammatic Construction Theory for Charged Excitations in Solids
    J. Chem. Theory Comput, 2022, 18, 9
    10.1021/acs.jctc.2c00565
  • Stair, N.H. & Evengelista, A.
    QForte: An Efficient State-Vector Emulator and Quantum Algorithms Library for Molecular Electronic Structure
    J. Chem. Theory Comput2022, 18, 3
    10.1021/acs.jctc.1c01155
  • Duan, C.; Nandy A.; Adamji, H.; Roman-Leshkov, Y.; & Kulik, H.
    Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis
    J. Chem. Theory Comput. 2022, 18, 7, 4282–4292.
    10.1021/acs.jctc.2c00331
  • Schwalbe, S.; Trepte, K.; & Lehtola, S.
    How Good are Recent Density Functionals for Ground and Excited States of One-Electron Systems?
    Chem arXiv:2208.06482, 2022.
    arxiv.org/abs/2208.06482
  • Teale A, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov A, Crawford, T.D., et al. (70 authors)
    DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science
    Phys. Chem. Chem. Phys., 2022
    pubs.rsc.org/en/content/articlelanding/2022/cp/d2cp02827a
  • Irrgang, M.E.; Davis, C.; & Kasson, P.M.
    gmxapi: A GROMACS-native Python interface for molecular dynamics with ensemble and plugin support
    PLoS Comput Biol, 2022, 18(2) Feb.
    ncbi.nlm.nih.gov/pmc/articles/PMC8880871/
  • Duan, C.; Chu, D.B.K.; Nandy A.; Adamji, H.; & Kulik, H.
    Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost
    Chemical Science, 2022, 17.
    rsc.org/en/content/articlelanding/2022/SC/D2SC00393G
  • Duan, C.; Nandy, A.; Adamji, H. Roman-Leshkov, Y. & Kulik, H.
    Machine learning models predict calculation outcomes with the transferability necessary for computational catalysis
    Chem arXiv, 2022
    arxiv.org/abs/2203.01276
  • Pathak, S.; Rackers, J.A.; Lopez, I.E.; Fernandez, R.L.; Lee, A.J.; Bricker, W.P.; & Lehtola, S.
    Accurate Hellmann-FeynmanForces with Optimized Aton-Centered Gaussian Basis Sets
    Chem arXiv, 2022
    arxiv.org/abs/2207.03587
  • Lehtola, S. & Karttunen, A.J.
    Free and open source software for computational chemistry education
    WIREs Computational Molecular Science, 2022
    doi/10.1002/wcms.1610
  • Lehtola, S.; & Marques, M.A.L.
    Many Recent Density Functionals are Numerically Ill-Behaved
    Chem arXiv, 2022
    arxiv.org/abs/2206.14062
  • Ringer McDonald, A.; Roberts, R.; Koeppe, J.R.; & Hall, B.L.
    Undergraduate Structural Biology Education: A shift from Users to Developers of Computation and Simulation Tools
    Current Opinion in Structural Biology2022, 72, 39-45
    10.1016/j.sbi.2021.07.012
  • Nash, J.A.; Mostafanejad, M.; Crawford, T.D.; & Ringer McDonald, A.
    MolSSI Education: Empowering the Next Generation of Computational Molecular Scientists
    Computing in Science and Engineering, 2022, April.
    10.22541/au.164910777.74730983/v1
  • Lehtola, S.
    Straightforward and Accurate Automatic Auxiliary Basis Set Generation for Molecular Calculations with Atomic Orbital Basis Sets
    J. Chem. Theory Comput2021, 17, 11
    10.1021/acs.jctc.1c00607
  • Kidder, K.M.; Szukalo, R.J.; & Noid, W.G. (with contributions from Lebold K.)
    Energetic and entropic considerations for coarse-graining
    The European Physical Journal B, 2021, 94(153).
    10.1140/epjb/s10051-021-00153-4
  • Smith, D.G.A., Lolinco, A.T. . . . Burns, L.A.
    Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and interoperability among computational chemistry programs
    Journal of Chemical Physics, 2021, 155, 20
    10.1063/5.0059356
  • Westheimer, M.B. and Gordon, M.S.
    Scalable ab initio fragmentation methods based on a truncated expansion of the non-orthogonal molecular orbital model
    Journal of Chemical Physics, 2021, 155, 15
    10.1063/5.0064864
  • Gururangan, K.; Deustua, J. E.; Shen, J.; & Piecuch, P.
    High-level coupled-cluster energetics by merging moment expansions with selected configuration interaction
    Journal of Chemical Physics2021, 155(17), 174114
    10.1063/5.0064400?journalCode=jcp
  • Sarka, Janos; & Poirier, B.
    Hitting the Trifecta: How to Simultaneously Push the Limits of Schrödinger Solution with Respect to System Size, Convergence Accuracy, and Number of Computed States
    J. Chem. Theory Comput. 2021, 17, 12, 7732–7744
    10.1021/acs.jctc.1c00824
  • Qiu, Y.; Smith, D.G.A.; Boothroyd, S.; Hang, J.; Hahn, D.F.; Wagner, J.; Bannan, C.C.; Gokey, T.; Lim, V.T.; Stern, C.D.; Rizzi, A.; Tjanaka, B.; Tresaden, G.; Lucase, X.; Shirts, M.R.; Gilson, M.K.; Chodera, J.D.; Bayly, C.I.; Mobley, D.L.; & Wang, L.P.
    Development and Benchmarking of Open Force Field v1.0.0—the Parsley Small-Molecule Force Field
    J. Chem, Theory Comput. 2021, 17, 10 6262-6280
    10.1021/acs.jctc.1c00571
  • Dick, S.; & Fernandez-Serra, M.
    Highly Accurate and Constrained Density Functional Obtained with Differentiable Programming
    Physical Review B2021 104, L161109
    10.1103/PhysRevB.104.L161109
  • Duan, C.; Chen, S.; Taylor, M.G.; Liu, F.; & Kulik, H.J.
    Machine Learning to Tame Divergent Density Functional Approximations: A New Path to Consensus Materials Design Principles
    Chemical Science2021, 12, 13021-13036
    10.1039/D1SC03701C
  • Dana, A.G.; Wu, H.; Ranasinghe, D.S.; Pickard IV, F.C.; Wood, G.P.F.; Zelesky, T.; Sluggett, G.W.; Mustakis, J.; & Green, W.H.
    Kinetic Modeling of API Oxidation: (1) The AIBN/H2O/CH3OH Radical “Soup”
    Mol. Pharmaceutics2021, 18, 8, 3037-3049
    10.1021/acs.molpharmaceut.1c00261
  • Shao, X.; Mi, W.; & Pavanello
    Revised Huang-Carter Nonlocal Kinetic Energy Functional for Semiconductors and Their Surfaces
    Physical Review B2021, 104, 045118
    10.1103/PhysRevB.104.045118
  • Gayday, I.; Teplukhin, A.; Moussa, J.; & Babikov, D.
    SpectrumSDT: A Program for Parallel Calculation of Coupled Rotational-Vibrational Energies and Lifetimes of Bound States and Scattering Resonances in Triantomic Systems
    Computer Physics Communications, 2021, 267, 108084
    S001046552100196X?via%3Dihub
  • Stair, N.H.; & Evangelista, F.A.
    Simulating Many-Body Systems with a Projective Quantum Eigensolver
    PRX Quantum, 2021, 2, 030301
    10.1103/PRXQuantum.2.030301
  • Nash, J.A. & Pritchard, B.P.
    Coding, Software Engineering, and Molecular Science — Teaching a Multidisciplinary Course to Chemistry Graduate Students
    From Teaching Programming across the Chemistry Curriculum, 2021, ACS Symposium Series, Vol. 1387, Chapter 11, pp. 159-171
    https://pubs.acs.org/doi/full/10.1021/bk-2021-1387.ch011
  • Nandy, A.; Duanb, C.; Taylor, M.G.; Liu, F.; Steeves, A.H. & Kulik, H.J.
    Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning
    Chemical Reviews2021, 121(16), 9927-10000
    10.1021/acs.chemrev.1c00347
  • Magoulas, I,; Gururangan, K.; Piecuch, P.; Deustua, J. E.; & Shen, J.
    Is Externally Corrected Coupled Cluster Always Better Than the Underlying Truncated Configuration Interaction?
    J. Chem. Theory Comput., 2021, 17(7), 4006-4027.
    10.1021/acs.jctc.1c00181
  • Yao, Y. & Umrigar, C.J.
    Orbital Optimization in Selected Configuration Interaction Methods
    J. Chem. Theory Comput., 2021, 17(7), 4183-4194.
    10.1021/acs.jctc.1c00385
  • Kodrycka, M.; & Patkowski, K.
    Efficient Density-Fitted Explicitly Correlated Dispersion and Exchange Dispersion Energies
    J. Chem. Theory Comput., 2021, 17(3), 1435-1456
    10.1021/acs.jctc.0c01158
  • Clark, A.E.; Adams, H.; Hernandez, R.; Krylov, A.; Niklasson, A.M.N.; Sarupria, S.; Wang, Y.; Wild, S.M.; Yang, Q.
    The Middle Science: Traversing Scle in Complex Many-Body Systems
    ACS Centr. Sci. 2021, 7, 8, 1271-1287
    10.1021/acscentsci.1c00685
  • Yao, Y.; Giner, E.; Anderson, T.A.; Tolouse, J.; & Umrigar
    Accurate energies of transition metal atoms, ions, and monoxides using selected configuration interaction and density-based basis-set correction
    The Journal of Chemical Physics, 2021, 155, 20414
    10.1063/5.0072296
  • Kidder, K.M.; Szukalo, R.J. & Noid, W.G.
    Energetic and Entropic Considerations for Coarse-Graining
    European Physical Journal B2021, 94,7
    10.1140/epjb/s10051-021-00153-4
  • Banerjee, S.; & Sokolov, A.Y.
    Efficient implementation of the single-reference algebraic diagrammatic construction theory for charged excitations: Applications to the TEMPO radical and DNA base pairs
    Journal of Chemical Physics2021, 154(7), 124103
    10.1063/5.0040317
  • Deustua, J.E.; Shen, J.; Piecuch, P.
    High-level coupled-cluster energetics by Monte Carlo sampling and moment expansions: Further details and comparisons
    Journal of Chemical Physics2021, 154(12), 074105
    10.1063/5.0045468
  • Babikov,  D.; Grushnikova E.; Gayday, I.; & Teplukhin, A.
    Four Isotope-Labeled Recombination Pathways of Ozone Formation
    Molecules2021, 26, 5
    10.3390/molecules26051289
  • Barnes, T.; Marin-Rimoldi, E.; Ellis, S.; Crawford, T.D.
    The MolSSI Driver Interface Project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes
    Computer Physics Communications2021, 261, 107688
    10.1016/j.cpc.2020.107688
  • Janet, J.P.; Duan, C.; Nandy, A.; Liu, F.; Kulik, H.J.
    Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design
    Acc. Chem. Res. 2021, 54, 3, 532–545
    10.1021/acs.accounts.0c00686
  • Husch, T.; Sun, J.; Cheng, L.; Lee, S.J.R.; Miller, T.F.
    Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states
    Journal of Chemical Physics2021, 154(6), 064108
    10.1063/5.0032362
  • Nash, J.; Barnes, T.; & Vaissier Welborn, V.
    ELECTRIC: Electric fields Leveraged from multipole Expansion Calculations in Tinker Rapid Interface Code
    Journal of Open Source Software (JOSS), 2020, 5(54), 2576
    10.21105/joss.02576
  • McDonald, A.R.; Nash, J.A.; Nerenberg, P.S.; Ball, K.A.; Sode, O.; Foley IV, J.J.; Windus, T.L.; Crawford, T.D.
    Building Capacity for Undergraduate Education and Training in Computational Molecular Science: A Collaboration between the MERCURY Consortium and the Molecular Sciences Software Institute
    Quantum Chemistry2022120, 20, e26359
    10.1002/qua.26359
  • Duan, C.; Liu, F.; Nandy, A, & Kulik, H.J.
    Data-Driven Approaches Can Overcome the Cost-Accuracy Trade-Off in Multireference Diagnostics
    J. Chem. Theory Comput., 2020, 16, 4376-4387.
    10.1021/acs.jctc.0c00358
  • Gayday, I.; Grushnikova, E.; & Babikov, D.
    Influence of the Coriolis Effect on the Properties of Scattering Resonances in Symmetric and Asymmetric Isotopomers of Ozone
    Physical Chemistry Chemical Physics2020, 22, 27560-27571.
    10.1039/D0CP05060A
  • Riera, M.; Hirales, A.; Ghosh, R.; & Paesani, F.
    Data-Driven Many-Body Model with Chemical Accuracy for CH4/H2O Mixtures
    The Journal of Physical Chemistry B2020, 11207-11221
    10.1021/acs.jpcb.0c08728
  • Eriksen, J.J.; Anderson, T.A.; Deustua, J.E. ……. Gauss, J. (24 authors)
    The Ground State Electronic Energy of Benzene
    J. Phys. Chem. Lett., 2020, 11(20), 8922.
    10.1021/acs.jpclett.0c02621
  • Yao, Y.; Giner, E.; Li, J.; Toulouse, J.; & Umrigar, C.J.
    Almost exact energies for the Gaussian-2 set with the semistochastic heat-bath configuration interaction method
    Journal of Chemical Physics2020, 153(12), 4117
    10.1063/5.0018577
  • Zagorec-Marks, W.; Smith J.E.T.; Foreman, M.M.; Sharma, S.; & Weber, J.M.
    Intrinsic Electronic Spectra of Cryogenically Prepared Protoporphyrin IX Ions in Vacuo: Deprotonation-induced Stark Shifts
    Physical Chemistry Chemical Physics202036.
    10.1039/d0cp03614e
  • Stair, N.H.; & Evangelista, F. A.
    Exploring Hilbert Space on a Budget: Novel Benchmark Set and Performance Metric for Testing Electronic Structure Methods in the Regime of Strong Correlation
    Journal of Chemical Physics, 2020, 153(10), 4108
    10.1063/5.0014928
  • Hanwell, M.D.; Harris, C.; Genova, A.; Haghighatlari, M.; El Khatib, M.; Avery, P.; Hachmann, J.; & de Jong, W.A.
    Open Chemistry, JupyterLab, REST, and Quantum Chemistry
    International Journal of Quantum Chemistry, 2020e26472
    10.1002/qua.26472
  • Sidky, H.; Chen, W.; & Ferguson, A.L.
    Molecular Latent Space Simulators
    Chemical Science2020, 35.
    10.1039/D0SC03635H
  • Yuwono, S.H.; Chakraborty, A.; Deustua, J.E.; Shen, J.; & Piecuch, P.
    Accelerating Convergence of Equation-of-Motion Coupled-Cluster Computations Using the Semi-stochastic CC(P;Q) Formalism
    Molecular Physics, 2020, Article e1817592
    10.1080/00268976.2020.1817592
  • Duan C.; Liu, F.; Nandy, A.; & Kulik, H.J.
    Semi-supervised Machine Learning Enables the Robust Detection of Multirefence Character at Low Cost
    J. Phys. Chem. Lett., 2020, 11(16), 6640.
    10.1021/acs.jpclett.0c02018
  • Sezginel, K.T. & Wilmer, C.E.
    Modeling Diffusion of Nanocars on a Cu (110) Surface
    Molecular Systems Design & Engineering, 20207
    10.1039/C9ME00171A
  • Gao, X.; Ramezanghorbani, F.; Isayev, O.; Smith, J.S.; Roitberg, A.
    TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials
    J. Chem. Inf. Model.2020, 60(7), 3408-3415.
    10.1021/acs.jcim.0c00451
  • Sun, Q.; Xhang, X.; Banerjee, S.; Bao, P.; Barbry, M., et al.
    Recent Developments in the PySCF Program Package
    Journal of Chemical Physics2020, 153(2)
    10.1063/5.0006074
  • Dick, S. & Fernandez-Serra, M.
    Machine Learning Accurate Exchange and Correlation Functionals of the Electronic Density
    Nature Communications, 2020, 11, 3509
    10.1038/s41467-020-17265-7
  • Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.N,; Ward, L.; Ellis, S.; Pritchard, B.; Crawford, T.D.
    The MolSSI QCArchive Project: An Open-source Platform to Compute, Organize, and Share Quantum Chemistry Data
    WIREs Computational Molecular Science, 2020
    10.1002/wcms.1491
  • Barca, G.M.J. …  Deustua, J.E.; et al. (42 authors)
    Recent Developments in the General Atomic and Molecular Electronic Structure System
    Journal of Chemical Physics, 2020, 152(15), 4102
    10.1063/5.0005188
  • Qiu, Y.; Smith, D.G.A.; Stern, C.D.; Feng, M.; Jang, H.; and Wang, L.-P.
    Driving Torsion Scans with Wavefront Propagation
    Journal of Chemical Physics, 2020, 152(24), 4116.
    10.1063/5.0009232
  • Yao, Y.; Umrigar, J.; Elser, V.
    Chemistry of the Spin-½ Kagome Heisenberg Antiferromagnet
    Physical Review B 2020, 102.
    10.1103/PhysRevB.102.014413
  • Oliveira, M.J. T.; ….. Smith, D.G.A.,; Wu, V. W-Z.
    The CECAM Electronic Structure Library and the Modular Software Development Paradigm
    Journal of Chemical Physics, 2020, 152(2).
    10.1063/5.0012901
  • Vyas, R.; Dice, B.D.; Harper, E.S.; Spellings, M.P.; Anderson, J.A.; Glotzer, S.C.
    freud: A Software Suite for High Throughput Analysis of Particle Simulation Data
    Computer Physics Communications 2020, 254
    10.1016/j.cpc.2020.107275
  • Lim, N.M.; Osato, M.; Warren, G. L.; Mobley, D. L.
    Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations
    Journal of Chemical Theory and Computation 2020, 16(4), 2778-2794
    10.1021/acs.jctc.9b01096
  • Riera, M.; Yeh, E.P.; Paesani, F.
    Data-Driven Many-Body Models for Molecular Fluids: CO2/H2O Mixtures as a Case Study
    Journal of Chemical Theory and Computation 2020, 16(4), 2246-2257
    10.1021/acs.jctc.9b01175
  • Sidky, H.; Chen, W.; & Ferguson, A.L.
    Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation
    Molecular Physics 2020, 18(5)
    10.1080/00268976.2020.1737742
  • Mostafanejad, M.; Liebenthal, M.D.; DePrince, A. E.
    Global Hybrid Multiconfiguration Pair-Density Functional Theory.
    Journal of Chemical Theory and Computation 2020,16(4), 2274-2283
    10.1021/acs.jctc.9b01178
  • Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.; Ward, L.; Ellis, S.J.; Crawford, T.D.
    The MolSSI QCArchive Project:  An open-source platform to compute, organize, and share quantum chemistry data.
    Chem arXiv, 2020
    https://chemrxiv.org/s/22566e14d96e43f7611a
  • Haghighatlari, M.; Vishwakarma, G.; Altarawy, D.; Subramanian, R.; Kota, B. U.; Sonpal, A.; Setlur, S.; Hachmann, J.
    ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data
    WIREs Computational Molecular Science 2020, e1458
    10.1002/wcms.1458
  • Stair, N. H.; Huang, R.; Evangelista, F. A.
    A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons
    Journal of Chemical Theory and Computation 2020,16(4), 2236-2245
    10.1021/acs.jctc.9b01125
  • Sezginel, K. B.; Wilmer, C. E.
    Modeling diffusion of nanocars on a Cu (110) surface
    Molecular Systems Design & Engineering 2020XXX, XXX
    10.1039/c9me00171a
  • Mullinax, J.W.; Maradzike, E.; Koulias, L.N.;  Mostafanejad, M.; Epifanovsky, E.; Gidofalvi, G.; DePrince, A. E.
    Heterogeneous CPU + GPU Algorim for Variational Two-Electron Reduced-Density Matrix-Driven Complete Active-Space Self-Consistent Ffield Theory.
    Journal of Chemical Theory and Computation 2019, 15(11) 6164-6178
    10.1021/acs.jctc.9b00768
  • Deustua, J.E.; Yuwono, S.H.; Shen, J.; & Piecuch, P.
    Accurate excited-state energetics by a combination of Monte Carlo sampling and equation-of-motion coupled-cluster computations
    Journal of Chemical Physics2019, 150, 11101
    10.1063/1.5090346
  • Mostafanejad, M.; Haney, J.; DePrince, A. E.
    Kinetic-energy-based error quantification in Kohn–Sham density functional theory
    Physical Chemistry Chemical Physics 201921(48), 26492-26501
    10.1039/c9cp04595c
  • Afzal, M. A. F.; Sonpal, A.; Haghighatlari, M.; Schultz, A. J.; Hachmann, J.
    A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules
    Chemical Science 201910, 8374-8383
    10.1039/c9sc02677k
  • Riera, M.; Lambros, E.; Nguyen, T. T.; Götz, A. W.; Paesani, F.
    Low-order many-body interactions determine the local structure of liquid water
    Chemical Science 201910, 8211-8218
    10.1039/c9sc03291f
  • Sidky, H.; Chen, W.; Ferguson, A. L.
    High-Resolution Markov State Models for the Dynamics of Trp-Cage Miniprotein Constructed Over Slow Folding Modes Identified by State-Free Reversible VAMPnets
    The Journal of Physical Chemistry B 2019123, 7999-8009
    10.1021/acs.jpcb.9b05578
  • Tazhigulov, R. N.Gayvert, J. R.; Wei, M.; Bravaya, K. B.
    eMap: A Web Application for Identifying and Visualizing Electron or Hole Hopping Pathways in Proteins
    The Journal of Physical Chemistry B 2019123, 6946-6951
    10.1021/acs.jpcb.9b04816
  • Chen, W.; Sidky, H.; Ferguson, A. L.
    Capabilities and limitations of time-lagged autoencoders for slow mode discovery in dynamical systems
    The Journal of Chemical Physics 2019151, 064123
    10.1063/1.5112048
  • Zhang, B.Altarawy, D.Barnes, T.; Turney, J. M.; Schaefer, H. F.
    Janus: An Extensible Open-Source Software Package for Adaptive QM/MM Methods
    Journal of Chemical Theory and Computation 201915, 4362-4373
    10.1021/acs.jctc.9b00182
  • Abbott, A. S.; Turney, J. M.; Zhang, B.Smith, D. G. A.Altarawy, D.; Schaefer, H. F.
    PES-Learn: An Open-Source Software Package for the Automated Generation of Machine Learning Models of Molecular Potential Energy Surfaces
    Journal of Chemical Theory and Computation 201915, 4386-4398
    10.1021/acs.jctc.9b00312
  • Takeshita, T. Y.; Dou, W.; Smith, D. G. A.; de Jong, W. A.; Baer, R.; Neuhauser, D.; Rabani, E.
    Stochastic resolution of identity second-order Matsubara Green’s function theory
    The Journal of Chemical Physics 2019151, 044114
    10.1063/1.5108840
  • Carleo, G.; Choo, K.; Hofmann, D.; Smith, J. E.; Westerhout, T.; Alet, F.; Davis, E. J.; Efthymiou, S.; Glasser, I.; Lin, S.; Mauri, M.; Mazzola, G.; Mendl, C. B.; van Nieuwenburg, E.; O’Reilly, O.; Théveniaut, H.; Torlai, G.; Vicentini, F.; Wietek, A.
    NetKet: A machine learning toolkit for many-body quantum systems
    SoftwareX 201910, 100311
    10.1016/j.softx.2019.100311
  • Chen, W.; Sidky, H.; Ferguson, A. L.
    Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets
    The Journal of Chemical Physics 2019150, 214114
    10.1063/1.5092521
  • Lebold, K. M.; Noid, W. G.
    Dual approach for effective potentials that accurately model structure and energetics
    The Journal of Chemical Physics 2019150, 234107
    10.1063/1.5094330
  • Hays, J. M.; Cafiso, D. S.; Kasson, P. M.
    Hybrid Refinement of Heterogeneous Conformational Ensembles Using Spectroscopic Data
    The Journal of Physical Chemistry Letters 201910, 3410-3414
    10.1021/acs.jpclett.9b01407
  • Afzal, M. A. F.; Haghighatlari, M.; Ganesh, S. P.; Cheng, C.; Hachmann, J.
    Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining
    The Journal of Physical Chemistry C 2019123, 14610-14618
    10.1021/acs.jpcc.9b01147
  • Sun, S.; Williams-Young, D.; Li, X.
    An ab Initio Linear Response Method for Computing Magnetic Circular Dichroism Spectra with Nonperturbative Treatment of Magnetic Field
    Journal of Chemical Theory and Computation 201915, 3162-3169
    10.1021/acs.jctc.9b00095
  • Vu, O.; Mendenhall, J.; Altarawy, D.; Meiler, J.
    BCL::Mol2D—a robust atom environment descriptor for QSAR modeling and lead optimization
    Journal of Computer-Aided Molecular Design 201933, 477-486
    10.1007/s10822-019-00199-8
  • Bajaj, P.; Riera, M.; Lin, J. K.; Mendoza Montijo, Y. E.; Gazca, J.; Paesani, F.
    Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters
    The Journal of Physical Chemistry A 2019123, 2843-2852
    10.1021/acs.jpca.9b00816
  • Nocito, D.; Beran, G. J. O.
    Reduced computational cost of polarizable force fields by a modification of the always stable predictor-corrector
    The Journal of Chemical Physics 2019150, 151103
    10.1063/1.5092133
  • Haghighatlari, M.; Hachmann, J.
    Advances of machine learning in molecular modeling and simulation
    Current Opinion in Chemical Engineering 201923, 51-57
    10.1016/j.coche.2019.02.009
  • Richard, R. M.; Bertoni, C.; Boschen, J. S.; Keipert, K.; Pritchard, B.; Valeev, E. F.; Harrison, R. J.; de Jong, W. A.; Windus, T. L.
    Developing a Computational Chemistry Framework for the Exascale Era
    Computing in Science & Engineering 201921, 48-58
    10.1109/mcse.2018.2884921
  • Zhuang, D.; Riera, M.; Schenter, G. K.; Fulton, J. L.; Paesani, F.
    Many-Body Effects Determine the Local Hydration Structure of Cs+in Solution
    The Journal of Physical Chemistry Letters 201910, 406-412
    10.1021/acs.jpclett.8b03829
  • Pritchard, B. P.Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L.
    New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community
    Journal of Chemical Information and Modeling 201959, 4814-4820
    10.1021/acs.jcim.9b00725
  • Kodrycka, M.; Holzer, C.; Klopper, W.; Patkowski, K.
    Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory
    Journal of Chemical Theory and Computation 201915, 5965-5986
    10.1021/acs.jctc.9b00547
  • Lebold, K. M.; Noid, W. G.
    Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability
    The Journal of Chemical Physics 2019151, 164113
    10.1063/1.5125246
  • Provazza, J.; Coker, D. F.
    Multi-level description of the vibronic dynamics of open quantum systems
    The Journal of Chemical Physics 2019151, 154114
    10.1063/1.5120253
  • Dick, S.; Fernandez-Serra, M.
    Learning from the density to correct total energy and forces in first principle simulations
    The Journal of Chemical Physics 2019151, 144102
    10.1063/1.5114618
  • Sun, S.; Williams-Young, D. B.; Stetina, T. F.; Li, X.
    Generalized Hartree–Fock with Nonperturbative Treatment of Strong Magnetic Fields: Application to Molecular Spin Phase Transitions
    Journal of Chemical Theory and Computation 201915, 348-356
    10.1021/acs.jctc.8b01140
  • Zanette, C.; Bannan, C. C.; Bayly, C. I.; Fass, J.; Gilson, M. K.; Shirts, M. R.; Chodera, J. D.; Mobley, D. L.
    Toward Learned Chemical Perception of Force Field Typing Rules
    Journal of Chemical Theory and Computation 201915, 402-423
    10.1021/acs.jctc.8b00821
  • Lebold, K. M.; Noid, W. G.
    Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids
    The Journal of Chemical Physics 2019150, 014104
    10.1063/1.5050509
  • Paesani, F.; Bajaj, P.; Riera, M.
    Chemical accuracy in modeling halide ion hydration from many-body representations
    Advances in Physics: X 20194, 1631212
    10.1080/23746149.2019.1631212
  • Sunseri, J.; King, J. E.; Francoeur, P. G.; Koes, D. R.
    Convolutional neural network scoring and minimization in the D3R 2017 community challenge
    Journal of Computer-Aided Molecular Design 201933, 19-34
    10.1007/s10822-018-0133-y
  • Riera, M.; Brown, S. E.; Paesani, F.
    Isomeric Equilibria, Nuclear Quantum Effects, and Vibrational Spectra of M+(H2O)n=1–3 Clusters, with M = Li, Na, K, Rb, and Cs, through Many-Body Representations
    The Journal of Physical Chemistry A 2018122, 5811-5821
    10.1021/acs.jpca.8b04106
  • Smith, D. G. A.Burns, L. A.; Sirianni, D. A.; Nascimento, D. R.; Kumar, A.; James, A. M.; Schriber, J. B.; Zhang, T.; Zhang, B.Abbott, A. S.; Berquist, E. J.; Lechner, M. H.; Cunha, L. A.; Heide, A. G.; Waldrop, J. M.; Takeshita, T. Y.; Alenaizan, A.; Neuhauser, D.; King, R. A.; Simmonett, A. C.; Turney, J. M.; Schaefer, H. F.; Evangelista, F. A.; DePrince, A. E.; Crawford, T. D.; Patkowski, K.; Sherrill, C. D.
    Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development
    Journal of Chemical Theory and Computation 201814, 3504-3511
    10.1021/acs.jctc.8b00286
  • Provazza, J.; Coker, D. F.
    Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
    The Journal of Chemical Physics 2018148, 181102
    10.1063/1.5031788
  • Avery, P.; Ludowieg, H.; Autschbach, J.; Zurek, E.
    Extended Hückel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer
    Journal of Chemical Education 201895, 331-337
    10.1021/acs.jchemed.7b00698
  • Irrgang, M. E.Hays, J. M.; Kasson, P. M.
    gmxapi: A high-level interface for advanced control and extension of molecular dynamics simulations
    Bioinformatics 201834, 3945-3947
    10.1093/bioinformatics/bty484
  • Krylov, A.Windus, T. L.Barnes, T.Marin-Rimoldi, E.Nash, J. A.Pritchard, B.Smith, D. G. A.Altarawy, D.Saxe, P.Clementi, C.Crawford, T. D.Harrison, R. J.Jha, S.Pande, V. S.Head-Gordon, T.
    Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science
    The Journal of Chemical Physics 2018149, 180901
    10.1063/1.5052551
  • Bannan, C. C.; Mobley, D. L.; Skillman, A. G.
    SAMPL6 challenge results from $$pK_a$$ p K a predictions based on a general Gaussian process model
    Journal of Computer-Aided Molecular Design 201832, 1165-1177
    10.1007/s10822-018-0169-z