MolSSI
  • People
    • Board of Directors
    • Science & Software Advisory Board
    • MolSSI Software Scientists
    • MolSSI Associates
  • Fellowships
    • The MolSSI Software Fellowship Program
    • All MolSSI Software Fellows
    • 2021-A Seed Software Fellows
    • 2020-B and COVID-19 Seed Software Fellows
    • 2020-B Investment Software Fellows
    • 2020-A Seed Software Fellows
    • 2020-A Investment Software Fellows
  • Workshops
    • 2020
      • Open Source Software for Rare-Event Sampling Strategies
      • MolSSI/BioExcel Workshop on Workflows in Biomolecular Simulations
      • Biennial Conference on Chemical Education (BCCE)
      • MolSSI Driver Interface (MDI)
    • 2019
      • Stochastic Approaches to Electronic Structure Calculations
      • Software for Advanced Potential Energy Surfaces
      • Summer School and Workshop on Parallel Computing in Molecular Sciences
      • The Open Molecular Science Cloud
      • Molecular Dynamics Software Interoperability
      • Rovibrational Molecular Spectroscopy
      • Machine Learning and Chemistry: Challenges on the Way Forward
      • A Science Gateway for Atomic and Molecular Physics
    • 2018
      • Science Gateways Community Institute
      • NSF SSE/SSI PIs Workshop
      • Modular Software Infrastructure for Excited State Dynamics
      • Tinker Modeling Software
      • Python for Quantum Chemistry and Materials Simulation
      • Solving or Circumventing Eigenvalue Problems in Electronic Structure Theory
      • Summer School and Workshop Parallel Computing in Molecular Sciences
      • Workflows in Biomolecular Simulations
    • 2017
      • Computational Materials Science
      • Biomolecular Simulation
      • Core Software Blocks in Quantum Chemistry
      • Interoperability
      • Excited States
      • Coding Solvation
      • Best Practices in Molecular Simulation
      • Biomolecular Workflows
      • Quantum Mechanics Schema
    • 2016
      • Cyberinfrastructure and the Molecular Sciences
  • Education
    • MolSSI Education Resources
    • MolSSI Best Practices
    • Summer Schools
    • Coding Workshop @ MERCURY
  • News & Events
  • Software
    • Software Projects
    • COVID-19 Hub
    • MolSSI@Github
    • Basis Set Exchange
    • MolSSI Integral Reference Project
    • QCArchive
    • QCSchema
    • MolSSI Driver Interface
    • CMS Cookiecutter
  • Resources
    • Frequently Asked Questions (FAQs)
    • Publications from the MolSSI
    • Community Code Database
    • MolSSI Community Code Partners
    • Job Opportunities in the Molecular Sciences
    • Requesting a Letter of Collaboration
  • Subscribe
Publications from the MolSSI

Publications from the MolSSI

In our continuing effort to expand MolSSI’s outreach and enhance our benefit to the community, we provide a repository of MolSSI-sponsored publications. (Bolded names indicate a MOlSSI Software Fellow, Scientist, or member of the Board of Directors.). For an inventory of the MolSSI’s most highly cited publications, visit our Google Scholar listing!

  • Riera, M.; Hirales, A.; Ghosh, R.; & Paesani, F.
    Data-Driven Many-Body Model with Chemical Accuracy for CH4/H2O Mixtures
    The Journal of Physical Chemistry B, 2020, 11207-11221
    10.1021/acs.jpcb.0c08728
  • Eriksen, J.J.; Anderson, T.A.; Deustua, J.E. ……. Gauss, J. (24 authors)
    The Ground State Electronic Energy of Benzene
    J. Phys. Chem. Lett., 2020, 11(20), 8922.
    10.1021/acs.jpclett.0c02621
  • Yao, Y.; Giner, E.; Li, J.; Toulouse, J.; & Umrigar, C.J.
    Almost exact energies for the Gaussian-2 set with the semistochastic heat-bath configuration interaction method
    Journal of Chemical Physics, 2020, 153(12), 4117
    10.1063/5.0018577
  • Zagorec-Marks, W.; Smith J.E.T.; Foreman, M.M.; Sharma, S.; & Weber, J.M.
    Intrinsic Electronic Spectra of Cryogenically Prepared Protoporphyrin IX Ions in Vacuo: Deprotonation-induced Stark Shifts
    Physical Chemistry Chemical Physics, 2020, 36.
    10.1039/d0cp03614e
  • Stair, N.H.; & Evangelista, F. A.
    Exploring Hilbert Space on a Budget: Novel Benchmark Set and Performance Metric for Testing Electronic Structure Methods in the Regime of Strong Correlation
    Journal of Chemical Physics, 2020, 153(10), 4108
    10.1063/5.0014928
  • Hanwell, M.D.; Harris, C.; Genova, A.; Haghighatlari, M.; El Khatib, M.; Avery, P.; Hachmann, J.; & de Jong, W.A.
    Open Chemistry, JupyterLab, REST, and Quantum Chemistry
    International Journal of Quantum Chemistry, 2020, e26472
    10.1002/qua.26472
  • Sidky, H.; Chen, W.; & Ferguson, A.L.
    Molecular Latent Space Simulators
    Chemical Science, 2020, 35.
    10.1039/D0SC03635H
  • Yuwono, S.H.; Chakraborty, A.; Deustua, J.E.; Shen, J.; & Piecuch, P.
    Accelerating Convergence of Equation-of-Motion Coupled-Cluster Computations Using the Semi-stochastic CC(P;Q) Formalism
    Molecular Physics, 2020, Article e1817592
    10.1080/00268976.2020.1817592
  • Duan C.; Liu, F.; Nandy, A.; & Kulik, H.J.
    Semi-supervised Machine Learning Enables the Robust Detection of Multirefence Character at Low Cost
    J. Phys. Chem. Lett., 2020, 11(16), 6640.
    10.1021/acs.jpclett.0c02018
  • Sezginel, K.T. & Wilmer, C.E.
    Modeling Diffusion of Nanocars on a Cu (110) Surface
    Molecular Systems Design & Engineering, 2020, 7
    10.1039/C9ME00171A
  • Gao, X.; Ramezanghorbani, F.; Isayev, O.; Smith, J.S.; Roitberg, A.
    TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials
    J. Chem. Inf. Model., 2020, 60(7), 3408-3415.
    10.1021/acs.jcim.0c00451
  • Sun, Q.; Xhang, X.; Banerjee, S.; Bao, P.; Barbry, M., et al.
    Recent Developments in the PySCF Program Package
    Journal of Chemical Physics, 2020, 153(2)
    10.1063/5.0006074
  • Oliveira, M.J.T.; . . . Smith, D.G.A.; . . . Yu, V.W.-Z. (37 authors)
    The CECAM Electronic Structure Library and the Modular Software Development Paradigm
    Journal of Chemical Physics, 2020, 153(2)
    10.1063/5.0012901
  • Dick, S. & Fernandez-Serra, M.
    Machine Learning Accurate Exchange and Correlation Functionals of the Electronic Density
    Nature Communications, 2020, 11, 3509
    10.1038/s41467-020-17265-7
  • Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.N,; Ward, L.; Ellis, S.; Pritchard, B.; Crawford, T.D.
    The MolSSI QCArchive Project: An Open-source Platform to Compute, Organize, and Share Quantum Chemistry Data
    WIREs Computational Molecular Science, 2020
    10.1002/wcms.1491
  • Barca, G.M.J. …  Deustua, J.E.; et al. (42 authors)
    Recent Developments in the General Atomic and Molecular Electronic Structure System
    Journal of Chemical Physics, 2020, 152(15), 4102
    10.1063/5.0005188
  • Qiu, Y.; Smith, D.G.A.; Stern, C.D.; Feng, M.; Jang, H.; and Wang, L.-P.
    Driving Torsion Scans with Wavefront Propagation
    Journal of Chemical Physics, 2020, 152(24), 4116.
    10.1063/5.0009232
  • Yao, Y.; Umrigar, J.; Elser, V.
    Chemistry of the Spin-½ Kagome Heisenberg Antiferromagnet
    Physical Review B 2020, 102.
    10.1103/PhysRevB.102.014413
  • Oliveira, M.J. T.; ….. Smith, D.G.A.,; Wu, V. W-Z.
    The CECAM Electronic Structure Library and the Modular Software Development Paradigm
    Journal of Chemical Physics, 2020, 152(2).
    10.1063/5.0012901
  • Vyas, R.; Dice, B.D.; Harper, E.S.; Spellings, M.P.; Anderson, J.A.; Glotzer, S.C.
    freud: A Software Suite for High Throughput Analysis of Particle Simulation Data
    Computer Physics Communications 2020, 254
    10.1016/j.cpc.2020.107275
  • Lim, N.M.; Osato, M.; Warren, G. L.; Mobley, D. L.
    Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations
    Journal of Chemical Theory and Computation 2020, 16(4), 2778-2794
    10.1021/acs.jctc.9b01096
  • Riera, M.; Yeh, E.P.; Paesani, F.
    Data-Driven Many-Body Models for Molecular Fluids: CO2/H2O Mixtures as a Case Study
    Journal of Chemical Theory and Computation 2020, 16(4), 2246-2257
    10.1021/acs.jctc.9b01175
  • Sidky, H.; Chen, W.; & Ferguson, A.L.
    Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation
    Molecular Physics 2020, 18(5)
    10.1080/00268976.2020.1737742
  • Mostafanejad, M.; Liebenthal, M.D.; DePrince, A. E.
    Global Hybrid Multiconfiguration Pair-Density Functional Theory.
    Journal of Chemical Theory and Computation 2020,16(4), 2274-2283
    10.1021/acs.jctc.9b01178
  • Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.; Ward, L.; Ellis, S.J.; Crawford, T.D.
    The MolSSI QCArchive Project:  An open-source platform to compute, organize, and share quantum chemistry data.
    ChemRvix 2020
    https://chemrxiv.org/s/22566e14d96e43f7611a
  • Haghighatlari, M.; Vishwakarma, G.; Altarawy, D.; Subramanian, R.; Kota, B. U.; Sonpal, A.; Setlur, S.; Hachmann, J.
    ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data
    WIREs Computational Molecular Science 2020, e1458
    10.1002/wcms.1458
  • Stair, N. H.; Huang, R.; Evangelista, F. A.
    A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons
    Journal of Chemical Theory and Computation 2020,16(4), 2236-2245
    10.1021/acs.jctc.9b01125
  • Sezginel, K. B.; Wilmer, C. E.
    Modeling diffusion of nanocars on a Cu (110) surface
    Molecular Systems Design & Engineering 2020, XXX, XXX
    10.1039/c9me00171a
  • Mullinax, J.W.; Maradzike, E.; Koulias, L.N.;  Mostafanejad, M.; Epifanovsky, E.; Gidofalvi, G.; DePrince, A. E.
    Heterogeneous CPU + GPU Algorim for Variational Two-Electron Reduced-Density Matrix-Driven Complete Active-Space Self-Consistent Ffield Theory.
    Journal of Chemical Theory and Computation 2019, 15(11) 6164-6178
    10.1021/acs.jctc.9b00768
  • Deustua, J.E.; Yuwono, S.H.; Shen, J.; & Piecuch, P.
    Accurate excited-state energetics by a combination of Monte Carlo sampling and equation-of-motion coupled-cluster computations
    Journal of Chemical Physics, 2019, 150, 11101
    10.1063/1.5090346
  • Mostafanejad, M.; Haney, J.; DePrince, A. E.
    Kinetic-energy-based error quantification in Kohn–Sham density functional theory
    Physical Chemistry Chemical Physics 2019, 21(48), 26492-26501
    10.1039/c9cp04595c
  • Afzal, M. A. F.; Sonpal, A.; Haghighatlari, M.; Schultz, A. J.; Hachmann, J.
    A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules
    Chemical Science 2019, 10, 8374-8383
    10.1039/c9sc02677k
  • Riera, M.; Lambros, E.; Nguyen, T. T.; Götz, A. W.; Paesani, F.
    Low-order many-body interactions determine the local structure of liquid water
    Chemical Science 2019, 10, 8211-8218
    10.1039/c9sc03291f
  • Sidky, H.; Chen, W.; Ferguson, A. L.
    High-Resolution Markov State Models for the Dynamics of Trp-Cage Miniprotein Constructed Over Slow Folding Modes Identified by State-Free Reversible VAMPnets
    The Journal of Physical Chemistry B 2019, 123, 7999-8009
    10.1021/acs.jpcb.9b05578
  • Tazhigulov, R. N.; Gayvert, J. R.; Wei, M.; Bravaya, K. B.
    eMap: A Web Application for Identifying and Visualizing Electron or Hole Hopping Pathways in Proteins
    The Journal of Physical Chemistry B 2019, 123, 6946-6951
    10.1021/acs.jpcb.9b04816
  • Chen, W.; Sidky, H.; Ferguson, A. L.
    Capabilities and limitations of time-lagged autoencoders for slow mode discovery in dynamical systems
    The Journal of Chemical Physics 2019, 151, 064123
    10.1063/1.5112048
  • Zhang, B.; Altarawy, D.; Barnes, T.; Turney, J. M.; Schaefer, H. F.
    Janus: An Extensible Open-Source Software Package for Adaptive QM/MM Methods
    Journal of Chemical Theory and Computation 2019, 15, 4362-4373
    10.1021/acs.jctc.9b00182
  • Abbott, A. S.; Turney, J. M.; Zhang, B.; Smith, D. G. A.; Altarawy, D.; Schaefer, H. F.
    PES-Learn: An Open-Source Software Package for the Automated Generation of Machine Learning Models of Molecular Potential Energy Surfaces
    Journal of Chemical Theory and Computation 2019, 15, 4386-4398
    10.1021/acs.jctc.9b00312
  • Takeshita, T. Y.; Dou, W.; Smith, D. G. A.; de Jong, W. A.; Baer, R.; Neuhauser, D.; Rabani, E.
    Stochastic resolution of identity second-order Matsubara Green’s function theory
    The Journal of Chemical Physics 2019, 151, 044114
    10.1063/1.5108840
  • Carleo, G.; Choo, K.; Hofmann, D.; Smith, J. E.; Westerhout, T.; Alet, F.; Davis, E. J.; Efthymiou, S.; Glasser, I.; Lin, S.; Mauri, M.; Mazzola, G.; Mendl, C. B.; van Nieuwenburg, E.; O’Reilly, O.; Théveniaut, H.; Torlai, G.; Vicentini, F.; Wietek, A.
    NetKet: A machine learning toolkit for many-body quantum systems
    SoftwareX 2019, 10, 100311
    10.1016/j.softx.2019.100311
  • Chen, W.; Sidky, H.; Ferguson, A. L.
    Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets
    The Journal of Chemical Physics 2019, 150, 214114
    10.1063/1.5092521
  • Lebold, K. M.; Noid, W. G.
    Dual approach for effective potentials that accurately model structure and energetics
    The Journal of Chemical Physics 2019, 150, 234107
    10.1063/1.5094330
  • Hays, J. M.; Cafiso, D. S.; Kasson, P. M.
    Hybrid Refinement of Heterogeneous Conformational Ensembles Using Spectroscopic Data
    The Journal of Physical Chemistry Letters 2019, 10, 3410-3414
    10.1021/acs.jpclett.9b01407
  • Afzal, M. A. F.; Haghighatlari, M.; Ganesh, S. P.; Cheng, C.; Hachmann, J.
    Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining
    The Journal of Physical Chemistry C 2019, 123, 14610-14618
    10.1021/acs.jpcc.9b01147
  • Sun, S.; Williams-Young, D.; Li, X.
    An ab Initio Linear Response Method for Computing Magnetic Circular Dichroism Spectra with Nonperturbative Treatment of Magnetic Field
    Journal of Chemical Theory and Computation 2019, 15, 3162-3169
    10.1021/acs.jctc.9b00095
  • Vu, O.; Mendenhall, J.; Altarawy, D.; Meiler, J.
    BCL::Mol2D—a robust atom environment descriptor for QSAR modeling and lead optimization
    Journal of Computer-Aided Molecular Design 2019, 33, 477-486
    10.1007/s10822-019-00199-8
  • Bajaj, P.; Riera, M.; Lin, J. K.; Mendoza Montijo, Y. E.; Gazca, J.; Paesani, F.
    Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters
    The Journal of Physical Chemistry A 2019, 123, 2843-2852
    10.1021/acs.jpca.9b00816
  • Nocito, D.; Beran, G. J. O.
    Reduced computational cost of polarizable force fields by a modification of the always stable predictor-corrector
    The Journal of Chemical Physics 2019, 150, 151103
    10.1063/1.5092133
  • Haghighatlari, M.; Hachmann, J.
    Advances of machine learning in molecular modeling and simulation
    Current Opinion in Chemical Engineering 2019, 23, 51-57
    10.1016/j.coche.2019.02.009
  • Richard, R. M.; Bertoni, C.; Boschen, J. S.; Keipert, K.; Pritchard, B.; Valeev, E. F.; Harrison, R. J.; de Jong, W. A.; Windus, T. L.
    Developing a Computational Chemistry Framework for the Exascale Era
    Computing in Science & Engineering 2019, 21, 48-58
    10.1109/mcse.2018.2884921
  • Zhuang, D.; Riera, M.; Schenter, G. K.; Fulton, J. L.; Paesani, F.
    Many-Body Effects Determine the Local Hydration Structure of Cs+in Solution
    The Journal of Physical Chemistry Letters 2019, 10, 406-412
    10.1021/acs.jpclett.8b03829
  • Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L.
    New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community
    Journal of Chemical Information and Modeling 2019, 59, 4814-4820
    10.1021/acs.jcim.9b00725
  • Kodrycka, M.; Holzer, C.; Klopper, W.; Patkowski, K.
    Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory
    Journal of Chemical Theory and Computation 2019, 15, 5965-5986
    10.1021/acs.jctc.9b00547
  • Lebold, K. M.; Noid, W. G.
    Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability
    The Journal of Chemical Physics 2019, 151, 164113
    10.1063/1.5125246
  • Provazza, J.; Coker, D. F.
    Multi-level description of the vibronic dynamics of open quantum systems
    The Journal of Chemical Physics 2019, 151, 154114
    10.1063/1.5120253
  • Dick, S.; Fernandez-Serra, M.
    Learning from the density to correct total energy and forces in first principle simulations
    The Journal of Chemical Physics 2019, 151, 144102
    10.1063/1.5114618
  • Sun, S.; Williams-Young, D. B.; Stetina, T. F.; Li, X.
    Generalized Hartree–Fock with Nonperturbative Treatment of Strong Magnetic Fields: Application to Molecular Spin Phase Transitions
    Journal of Chemical Theory and Computation 2019, 15, 348-356
    10.1021/acs.jctc.8b01140
  • Zanette, C.; Bannan, C. C.; Bayly, C. I.; Fass, J.; Gilson, M. K.; Shirts, M. R.; Chodera, J. D.; Mobley, D. L.
    Toward Learned Chemical Perception of Force Field Typing Rules
    Journal of Chemical Theory and Computation 2019, 15, 402-423
    10.1021/acs.jctc.8b00821
  • Lebold, K. M.; Noid, W. G.
    Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids
    The Journal of Chemical Physics 2019, 150, 014104
    10.1063/1.5050509
  • Paesani, F.; Bajaj, P.; Riera, M.
    Chemical accuracy in modeling halide ion hydration from many-body representations
    Advances in Physics: X 2019, 4, 1631212
    10.1080/23746149.2019.1631212
  • Sunseri, J.; King, J. E.; Francoeur, P. G.; Koes, D. R.
    Convolutional neural network scoring and minimization in the D3R 2017 community challenge
    Journal of Computer-Aided Molecular Design 2019, 33, 19-34
    10.1007/s10822-018-0133-y
  • Riera, M.; Brown, S. E.; Paesani, F.
    Isomeric Equilibria, Nuclear Quantum Effects, and Vibrational Spectra of M+(H2O)n=1–3 Clusters, with M = Li, Na, K, Rb, and Cs, through Many-Body Representations
    The Journal of Physical Chemistry A 2018, 122, 5811-5821
    10.1021/acs.jpca.8b04106
  • Smith, D. G. A.; Burns, L. A.; Sirianni, D. A.; Nascimento, D. R.; Kumar, A.; James, A. M.; Schriber, J. B.; Zhang, T.; Zhang, B.; Abbott, A. S.; Berquist, E. J.; Lechner, M. H.; Cunha, L. A.; Heide, A. G.; Waldrop, J. M.; Takeshita, T. Y.; Alenaizan, A.; Neuhauser, D.; King, R. A.; Simmonett, A. C.; Turney, J. M.; Schaefer, H. F.; Evangelista, F. A.; DePrince, A. E.; Crawford, T. D.; Patkowski, K.; Sherrill, C. D.
    Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development
    Journal of Chemical Theory and Computation 2018, 14, 3504-3511
    10.1021/acs.jctc.8b00286
  • Provazza, J.; Coker, D. F.
    Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
    The Journal of Chemical Physics 2018, 148, 181102
    10.1063/1.5031788
  • Avery, P.; Ludowieg, H.; Autschbach, J.; Zurek, E.
    Extended Hückel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer
    Journal of Chemical Education 2018, 95, 331-337
    10.1021/acs.jchemed.7b00698
  • Irrgang, M. E.; Hays, J. M.; Kasson, P. M.
    gmxapi: A high-level interface for advanced control and extension of molecular dynamics simulations
    Bioinformatics 2018, 34, 3945-3947
    10.1093/bioinformatics/bty484
  • Krylov, A.; Windus, T. L.; Barnes, T.; Marin-Rimoldi, E.; Nash, J. A.; Pritchard, B.; Smith, D. G. A.; Altarawy, D.; Saxe, P.; Clementi, C.; Crawford, T. D.; Harrison, R. J.; Jha, S.; Pande, V. S.; Head-Gordon, T.
    Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science
    The Journal of Chemical Physics 2018, 149, 180901
    10.1063/1.5052551
  • Bannan, C. C.; Mobley, D. L.; Skillman, A. G.
    SAMPL6 challenge results from $$pK_a$$ p K a predictions based on a general Gaussian process model
    Journal of Computer-Aided Molecular Design 2018, 32, 1165-1177
    10.1007/s10822-018-0169-z

Upcoming Events

View All Events



Contact Us

E: info@molssi.org
P: (540) 231-4457
Location: 1880 Pratt Drive, Suite 1100
Blacksburg, VA 24060

Subscribe to our mailing list

Board of Directors

T. Daniel Crawford (Virginia Tech)
Cecilia Clementi (Rice University)
Robert Harrison (Stony Brook University)
Teresa Head-Gordon (U.C. Berkeley)
Shantenu Jha (Rutgers University)
Anna Krylov (U. Southern California)
Theresa Windus (Iowa State University)
Dominika Zgid (U. Michigan)

Connect with us

Visit Us On FacebookVisit Us On LinkedinVisit Us On Twitter

NSFLogoThe MolSSI is supported by the U.S. National Science Foundation through grant number OAC-1547580.

© 2020 The Molecular Sciences Software Institute, Designed by FourDesign
Close Window

Loading, Please Wait!

This may take a second or two. Loading, Please Wait!